Asymptotically entropy-conservative and kinetic-energy preserving numerical fluxes for compressible Euler equations.
Carlo De MicheleGennaro CoppolaPublished in: J. Comput. Phys. (2023)
Keyphrases
- differential equations
- stochastic differential equations
- numerical methods
- finite difference
- monte carlo
- mathematical model
- energy consumption
- numerical solution
- information theoretic
- maximum a posteriori estimation
- information theory
- mutual information
- numerical analysis
- brownian motion
- sensitivity analysis
- energy minimization
- numerical algorithms
- biochemical networks
- minimum error
- neural network
- compressive sensing
- numerical data
- energy saving
- partial differential equations
- image processing
- data sets
- low energy
- energy efficient
- image denoising
- fuzzy entropy
- experimental data