Asymptotically entropy-conservative and kinetic-energy preserving numerical fluxes for compressible Euler equations.
Carlo De MicheleGennaro CoppolaPublished in: CoRR (2023)
Keyphrases
- differential equations
- stochastic differential equations
- numerical methods
- finite difference
- maximum a posteriori estimation
- numerical solution
- monte carlo
- information theory
- energy minimization
- sensitivity analysis
- mutual information
- information theoretic
- energy consumption
- mathematical model
- numerical algorithms
- worst case
- compressive sensing
- brownian motion
- numerical analysis
- energy saving
- nonlinear equations
- low energy
- alternating direction
- information entropy
- linear systems
- asymptotically optimal
- feature selection
- energy efficiency
- shannon entropy
- artificial neural networks
- image segmentation