Login / Signup
Random forest-based imputation outperforms other methods for imputing LC-MS metabolomics data: a comparative study.
Marietta Kokla
Jyrki Virtanen
Marjukka Kolehmainen
Jussi Paananen
Kati Hanhineva
Published in:
BMC Bioinform. (2019)
Keyphrases
</>
missing values
random forest
missing data
data sets
high dimensional data
decision trees
data analysis
training data
prior knowledge
computer vision
image processing
active learning
image classification
nmr spectra