Login / Signup
Zhuangzhi Xu
Publication Activity (10 Years)
Years Active: 2019-2024
Publications (10 Years): 10
Top Topics
High Order
Lie Algebra
Medial Axis
Hamilton Jacobi
Top Venues
Comput. Math. Appl.
CoRR
Math. Comput. Simul.
Appl. Math. Lett.
</>
Publications
</>
Fengli Yin
,
Zhuangzhi Xu
,
Yayun Fu
Novel high-order explicit energy-preserving schemes for NLS-type equations based on the Lie-group method.
Math. Comput. Simul.
225 (2024)
Dongdong Hu
,
Huiling Jiang
,
Zhuangzhi Xu
,
Yushun Wang
On convergence of a novel linear conservative scheme for the two-dimensional fractional nonlinear Schrödinger equation with wave operator.
Comput. Math. Appl.
150 (2023)
Zhuangzhi Xu
,
Yayun Fu
Two novel conservative exponential relaxation methods for the space-fractional nonlinear Schrödinger equation.
Comput. Math. Appl.
142 (2023)
Zhuangzhi Xu
,
Xin Shen
,
Lin Cao
Extraction of Forest Structural Parameters by the Comparison of Structure from Motion (SfM) and Backpack Laser Scanning (BLS) Point Clouds.
Remote. Sens.
15 (8) (2023)
Yayun Fu
,
Zhuangzhi Xu
Explicit high-order conservative exponential time differencing Runge-Kutta schemes for the two-dimensional nonlinear Schrödinger equation.
Comput. Math. Appl.
119 (2022)
Dongdong Hu
,
Wenjun Cai
,
Zhuangzhi Xu
,
Yonghui Bo
,
Yushun Wang
Dissipation-preserving Fourier pseudo-spectral method for the space fractional nonlinear sine-Gordon equation with damping.
Math. Comput. Simul.
188 (2021)
Zhuangzhi Xu
,
Wenjun Cai
,
Yongzhong Song
,
Yushun Wang
Explicit high-order energy-preserving exponential time differencing method for nonlinear Hamiltonian PDEs.
Appl. Math. Comput.
404 (2021)
Jin Cui
,
Zhuangzhi Xu
,
Yushun Wang
,
Chaolong Jiang
Mass- and energy-preserving exponential Runge-Kutta methods for the nonlinear Schrödinger equation.
Appl. Math. Lett.
112 (2021)
Jin Cui
,
Zhuangzhi Xu
,
Yushun Wang
,
Chaolong Jiang
Mass- and energy-preserving exponential Runge-Kutta methods for the nonlinear Schrödinger equation.
CoRR
(2020)
Zhuangzhi Xu
,
Wenjun Cai
,
Chaolong Jiang
,
Yushun Wang
Optimal error estimate of a conservative Fourier pseudo-spectral method for the space fractional nonlinear Schrödinger equation.
CoRR
(2019)