Login / Signup
Yong Zhang
ORCID
Publication Activity (10 Years)
Years Active: 2013-2024
Publications (10 Years): 8
Top Topics
Nonlinear Equations
Diffusion Equation
Hamilton Jacobi
Numerical Methods
Top Venues
J. Comput. Phys.
SIAM J. Sci. Comput.
CoRR
Comput. Phys. Commun.
</>
Publications
</>
Xin Liu
,
Qinglin Tang
,
Shaobo Zhang
,
Yong Zhang
On Optimal Zero-Padding of Kernel Truncation Method.
SIAM J. Sci. Comput.
46 (1) (2024)
Qinglin Tang
,
Manting Xie
,
Yong Zhang
,
Yuqing Zhang
A Spectrally Accurate Numerical Method for Computing the Bogoliubov-de Gennes Excitations of Dipolar Bose-Einstein Condensates.
SIAM J. Sci. Comput.
44 (1) (2022)
Xin Liu
,
Qinglin Tang
,
Shaobo Zhang
,
Yong Zhang
On optimal zero-padding of kernel truncation method.
CoRR
(2022)
Norbert J. Mauser
,
Yong Zhang
,
Xiaofei Zhao
On the Rotating Nonlinear Klein-Gordon Equation: NonRelativistic Limit and Numerical Methods.
Multiscale Model. Simul.
18 (2) (2020)
Leslie Greengard
,
Shidong Jiang
,
Yong Zhang
The Anisotropic Truncated Kernel Method for Convolution with Free-Space Green's Functions.
SIAM J. Sci. Comput.
40 (6) (2018)
Qinglin Tang
,
Yong Zhang
,
Norbert J. Mauser
A robust and efficient numerical method to compute the dynamics of the rotating two-component dipolar Bose-Einstein condensates.
Comput. Phys. Commun.
219 (2017)
Lukas Exl
,
Norbert J. Mauser
,
Yong Zhang
Accurate and efficient computation of nonlocal potentials based on Gaussian-sum approximation.
J. Comput. Phys.
327 (2016)
Xavier Antoine
,
Qinglin Tang
,
Yong Zhang
On the ground states and dynamics of space fractional nonlinear Schrödinger/Gross-Pitaevskii equations with rotation term and nonlocal nonlinear interactions.
J. Comput. Phys.
325 (2016)
Weizhu Bao
,
Shidong Jiang
,
Qinglin Tang
,
Yong Zhang
Computing the ground state and dynamics of the nonlinear Schrödinger equation with nonlocal interactions via the nonuniform FFT.
J. Comput. Phys.
296 (2015)
Weizhu Bao
,
Huaiyu Jian
,
Norbert J. Mauser
,
Yong Zhang
Dimension Reduction of the Schrödinger Equation with Coulomb and Anisotropic Confining Potentials.
SIAM J. Appl. Math.
73 (6) (2013)