Login / Signup
Tim De Ryck
ORCID
Publication Activity (10 Years)
Years Active: 2019-2024
Publications (10 Years): 18
Top Topics
Error Analysis
Neural Network
Change Point
Multi Layer
Top Venues
CoRR
NeurIPS
SIAM J. Numer. Anal.
IEEE Trans. Signal Process.
</>
Publications
</>
Tim De Ryck
,
Siddhartha Mishra
,
Roberto Molinaro
wPINNs: Weak Physics Informed Neural Networks for Approximating Entropy Solutions of Hyperbolic Conservation Laws.
SIAM J. Numer. Anal.
62 (2) (2024)
Tim De Ryck
,
Florent Bonnet
,
Siddhartha Mishra
,
Emmanuel de Bézenac
An operator preconditioning perspective on training in physics-informed machine learning.
ICLR
(2024)
Tim De Ryck
,
Siddhartha Mishra
Numerical analysis of physics-informed neural networks and related models in physics-informed machine learning.
CoRR
(2024)
Bogdan Raonic
,
Roberto Molinaro
,
Tim De Ryck
,
Tobias Rohner
,
Francesca Bartolucci
,
Rima Alaifari
,
Siddhartha Mishra
,
Emmanuel de Bézenac
Convolutional Neural Operators for robust and accurate learning of PDEs.
NeurIPS
(2023)
Tim De Ryck
,
Florent Bonnet
,
Siddhartha Mishra
,
Emmanuel de Bézenac
An operator preconditioning perspective on training in physics-informed machine learning.
CoRR
(2023)
Tim De Ryck
,
Siddhartha Mishra
Error analysis for physics-informed neural networks (PINNs) approximating Kolmogorov PDEs.
Adv. Comput. Math.
48 (6) (2022)
Tim De Ryck
,
Siddhartha Mishra
Generic bounds on the approximation error for physics-informed (and) operator learning.
CoRR
(2022)
Tim De Ryck
,
Siddhartha Mishra
Generic bounds on the approximation error for physics-informed (and) operator learning.
NeurIPS
(2022)
Tim De Ryck
,
Siddhartha Mishra
Error analysis for deep neural network approximations of parametric hyperbolic conservation laws.
CoRR
(2022)
Tim De Ryck
,
Siddhartha Mishra
,
Roberto Molinaro
wPINNs: Weak Physics informed neural networks for approximating entropy solutions of hyperbolic conservation laws.
CoRR
(2022)
Tim De Ryck
,
Ameya D. Jagtap
,
Siddhartha Mishra
Error estimates for physics informed neural networks approximating the Navier-Stokes equations.
CoRR
(2022)
Michael Prasthofer
,
Tim De Ryck
,
Siddhartha Mishra
Variable-Input Deep Operator Networks.
CoRR
(2022)
Tim De Ryck
,
Siddhartha Mishra
Error analysis for physics informed neural networks (PINNs) approximating Kolmogorov PDEs.
CoRR
(2021)
Tim De Ryck
,
Samuel Lanthaler
,
Siddhartha Mishra
On the approximation of functions by tanh neural networks.
Neural Networks
143 (2021)
Tim De Ryck
,
Samuel Lanthaler
,
Siddhartha Mishra
On the approximation of functions by tanh neural networks.
CoRR
(2021)
Tim De Ryck
,
Maarten De Vos
,
Alexander Bertrand
Change Point Detection in Time Series Data Using Autoencoders With a Time-Invariant Representation.
IEEE Trans. Signal Process.
69 (2021)
Tim De Ryck
,
Maarten De Vos
,
Alexander Bertrand
Change Point Detection in Time Series Data using Autoencoders with a Time-Invariant Representation.
CoRR
(2020)
Tim De Ryck
,
Siddhartha Mishra
,
Deep Ray
On the approximation of rough functions with deep neural networks.
CoRR
(2019)