Login / Signup
Subhayan De
ORCID
Publication Activity (10 Years)
Years Active: 2019-2023
Publications (10 Years): 10
Top Topics
Autoregressive
Stochastic Gradient
Nonlinear Dynamical Systems
Machine Learning
Top Venues
CoRR
J. Comput. Civ. Eng.
J. Comput. Phys.
</>
Publications
</>
Malik Hassanaly
,
Peter J. Weddle
,
Ryan N. King
,
Subhayan De
,
Alireza Doostan
,
Corey R. Randall
,
Eric J. Dufek
,
Andrew M. Colclasure
,
Kandler Smith
PINN surrogate of Li-ion battery models for parameter inference. Part I: Implementation and multi-fidelity hierarchies for the single-particle model.
CoRR
(2023)
Malik Hassanaly
,
Peter J. Weddle
,
Ryan N. King
,
Subhayan De
,
Alireza Doostan
,
Corey R. Randall
,
Eric J. Dufek
,
Andrew M. Colclasure
,
Kandler Smith
PINN surrogate of Li-ion battery models for parameter inference. Part II: Regularization and application of the pseudo-2D model.
CoRR
(2023)
Subhayan De
,
Patrick T. Brewick
A Bi-fidelity DeepONet Approach for Modeling Uncertain and Degrading Hysteretic Systems.
CoRR
(2023)
Subhayan De
,
Malik Hassanaly
,
Matthew J. Reynolds
,
Ryan N. King
,
Alireza Doostan
Bi-fidelity Modeling of Uncertain and Partially Unknown Systems using DeepONets.
CoRR
(2022)
Subhayan De
,
Alireza Doostan
-regularization and bi-fidelity data.
J. Comput. Phys.
458 (2022)
Subhayan De
,
Bhuiyan Shameem Mahmood Ebna Hai
,
Alireza Doostan
,
Markus Bause
Prediction of Ultrasonic Guided Wave Propagation in Solid-fluid and their Interface under Uncertainty using Machine Learning.
CoRR
(2021)
Subhayan De
Uncertainty Quantification of Locally Nonlinear Dynamical Systems Using Neural Networks.
J. Comput. Civ. Eng.
35 (4) (2021)
Subhayan De
,
Alireza Doostan
-Regularization and Bi-fidelity Data.
CoRR
(2021)
Subhayan De
,
Jolene Britton
,
Matthew J. Reynolds
,
Ryan Skinner
,
Kenneth E. Jansen
,
Alireza Doostan
On transfer learning of neural networks using bi-fidelity data for uncertainty propagation.
CoRR
(2020)
Subhayan De
,
Jerrad Hampton
,
Kurt Maute
,
Alireza Doostan
Topology Optimization under Uncertainty using a Stochastic Gradient-based Approach.
CoRR
(2019)