Login / Signup
Shanshan Wang
ORCID
Publication Activity (10 Years)
Years Active: 2008-2019
Publications (10 Years): 3
Top Topics
Hamilton Jacobi
Heat Equation
Semi Implicit
Eigendecomposition
Top Venues
Appl. Math. Comput.
Comput. Phys. Commun.
Commun. Nonlinear Sci. Numer. Simul.
Int. J. Comput. Math.
</>
Publications
</>
Xinxin Wei
,
Luming Zhang
,
Shanshan Wang
,
Feng Liao
An efficient split-step compact finite difference method for the coupled Gross-Pitaevskii equations.
Int. J. Comput. Math.
96 (12) (2019)
Shanshan Wang
,
Luming Zhang
Split-step cubic B-spline collocation methods for nonlinear Schrödinger equations in one, two, and three dimensions with Neumann boundary conditions.
Numer. Algorithms
81 (4) (2019)
Feng Liao
,
Luming Zhang
,
Shanshan Wang
Time-splitting combined with exponential wave integrator fourier pseudospectral method for Schrödinger-Boussinesq system.
Commun. Nonlinear Sci. Numer. Simul.
55 (2018)
Shanshan Wang
,
Tingchun Wang
,
Luming Zhang
Numerical computations for N-coupled nonlinear Schrödinger equations by split step spectral methods.
Appl. Math. Comput.
222 (2013)
Shanshan Wang
,
Luming Zhang
An efficient split-step compact finite difference method for cubic-quintic complex Ginzburg-Landau equations.
Comput. Phys. Commun.
184 (6) (2013)
Xin Li
,
Luming Zhang
,
Shanshan Wang
A compact finite difference scheme for the nonlinear Schrödinger equation with wave operator.
Appl. Math. Comput.
219 (6) (2012)
Shanshan Wang
,
Luming Zhang
Split-step orthogonal spline collocation methods for nonlinear Schrödinger equations in one, two, and three dimensions.
Appl. Math. Comput.
218 (5) (2011)
Shanshan Wang
,
Luming Zhang
,
Ran Fan
Discrete-time orthogonal spline collocation methods for the nonlinear Schrödinger equation with wave operator.
J. Comput. Appl. Math.
235 (8) (2011)
Luming Zhang
,
Dongmei Bai
,
Shanshan Wang
Numerical analysis for a conservative difference scheme to solve the Schrödinger-Boussinesq equation.
J. Comput. Appl. Math.
235 (17) (2011)
Shanshan Wang
,
Luming Zhang
A class of conservative orthogonal spline collocation schemes for solving coupled Klein-Gordon-Schrödinger equations.
Appl. Math. Comput.
203 (2) (2008)