Login / Signup
Salih Yalçinbas
Publication Activity (10 Years)
Years Active: 2000-2013
Publications (10 Years): 0
Top Topics
Low Order
Numerical Integration
Feed Forward Artificial Neural Networks
Initial Conditions
Top Venues
Int. J. Math. Math. Sci.
Appl. Math. Comput.
</>
Publications
</>
Ayse Kurt
,
Salih Yalçinbas
,
Mehmet Sezer
Fibonacci Collocation Method for Solving High-Order Linear Fredholm Integro-Differential-Difference Equations.
Int. J. Math. Math. Sci.
2013 (2013)
Tugçe Akkaya
,
Salih Yalçinbas
,
Mehmet Sezer
Numeric solutions for the pantograph type delay differential equation using First Boubaker polynomials.
Appl. Math. Comput.
219 (17) (2013)
Salih Yalçinbas
,
Müge Aynigül
,
Mehmet Sezer
A collocation method using Hermite polynomials for approximate solution of pantograph equations.
J. Frankl. Inst.
348 (6) (2011)
Necdet Bildik
,
Ali Konuralp
,
Salih Yalçinbas
Comparison of Legendre polynomial approximation and variational iteration method for the solutions of general linear Fredholm integro-differential equations.
Comput. Math. Appl.
59 (6) (2010)
Salih Yalçinbas
,
Mehmet Sezer
,
Hüseyin Hilmi Sorkun
Legendre polynomial solutions of high-order linear Fredholm integro-differential equations.
Appl. Math. Comput.
210 (2) (2009)
Mehmet Sezer
,
Salih Yalçinbas
,
Mustafa Gülsu
A Taylor polynomial approach for solving generalized pantograph equations with nonhomogenous term.
Int. J. Comput. Math.
85 (7) (2008)
Salih Yalçinbas
,
Mehmet Sezer
A Taylor collocation method for the approximate solution of general linear Fredholm-Volterra integro-difference equations with mixed argument.
Appl. Math. Comput.
175 (1) (2006)
Ali Fuat Yeniçerioglu
,
Salih Yalçinbas
On the stability of the second-order delay differential equations with variable coefficients.
Appl. Math. Comput.
152 (3) (2004)
Salih Yalçinbas
,
Ali Fuat Yeniçerioglu
Exact and approximate solutions of second order including function delay differential equations with variable coefficients.
Appl. Math. Comput.
148 (1) (2004)
Salih Yalçinbas
Taylor polynomial solutions of nonlinear Volterra-Fredholm integral equations.
Appl. Math. Comput.
127 (2-3) (2002)
Salih Yalçinbas
,
Mehmet Sezer
The approximate solution of high-order linear Volterra-Fredholm integro-differential equations in terms of Taylor polynomials.
Appl. Math. Comput.
112 (2-3) (2000)