Login / Signup
Roger Käppeli
ORCID
Publication Activity (10 Years)
Years Active: 2014-2024
Publications (10 Years): 11
Top Topics
Nonlinear Systems
High Order
Von Neumann
Stability Analysis
Top Venues
J. Comput. Phys.
CoRR
Found. Comput. Math.
</>
Publications
</>
Maximilian Herde
,
Bogdan Raonic
,
Tobias Rohner
,
Roger Käppeli
,
Roberto Molinaro
,
Emmanuel de Bézenac
,
Siddhartha Mishra
Poseidon: Efficient Foundation Models for PDEs.
CoRR
(2024)
Dinshaw S. Balsara
,
Roger Käppeli
Von Neumann Stability Analysis of DG-like and PNPM-like Schemes for PDEs that have Globally Curl-Preserving Evolution of Vector Fields.
CoRR
(2021)
Luc Grosheintz-Laval
,
Roger Käppeli
Well-balanced finite volume schemes for nearly steady adiabatic flows.
J. Comput. Phys.
423 (2020)
Jonas P. Berberich
,
Roger Käppeli
,
Praveen Chandrashekar
,
Christian Klingenberg
High order discretely well-balanced finite volume methods for Euler equations with gravity - without any à priori information about the hydrostatic solution.
CoRR
(2020)
Dinshaw S. Balsara
,
Roger Käppeli
,
Walter Boscheri
,
Michael Dumbser
Curl constraint-preserving reconstruction and the guidance it gives for mimetic scheme design.
CoRR
(2020)
Roger Käppeli
,
Dinshaw S. Balsara
,
Praveen Chandrashekar
,
Arijit Hazra
schemes for computational electrodynamics based on two-derivative Runge-Kutta timestepping and multidimensional generalized Riemann problem solvers - A von Neumann stability analysis.
J. Comput. Phys.
408 (2020)
Luc Grosheintz-Laval
,
Roger Käppeli
Well-balanced finite volume schemes for nearly steady adiabatic flows.
CoRR
(2020)
Luc Grosheintz-Laval
,
Roger Käppeli
High-order well-balanced finite volume schemes for the Euler equations with gravitation.
J. Comput. Phys.
378 (2019)
Dinshaw S. Balsara
,
Roger Käppeli
von Neumann stability analysis of globally constraint-preserving DGTD and PNPM schemes for the Maxwell equations using multidimensional Riemann solvers.
J. Comput. Phys.
376 (2019)
Dinshaw S. Balsara
,
Roger Käppeli
Von Neumann stability analysis of globally divergence-free RKDG schemes for the induction equation using multidimensional Riemann solvers.
J. Comput. Phys.
336 (2017)
Ulrik S. Fjordholm
,
Roger Käppeli
,
Siddhartha Mishra
,
Eitan Tadmor
Construction of Approximate Entropy Measure-Valued Solutions for Hyperbolic Systems of Conservation Laws.
Found. Comput. Math.
17 (3) (2017)
Roger Käppeli
,
S. Mishra
Well-balanced schemes for the Euler equations with gravitation.
J. Comput. Phys.
259 (2014)