​
Login / Signup
Pouria Assari
ORCID
Publication Activity (10 Years)
Years Active: 2013-2024
Publications (10 Years): 15
Top Topics
Numerical Solution
Boundary Conditions
Least Squares
Integral Equation
Top Venues
Eng. Comput.
J. Comput. Appl. Math.
Appl. Math. Comput.
Int. J. Comput. Math.
</>
Publications
</>
Alireza Hosseinian
,
Pouria Assari
,
Mehdi Dehghan
An efficient numerical scheme to solve generalized Abel's integral equations with delay arguments utilizing locally supported RBFs.
J. Comput. Appl. Math.
446 (2024)
Alireza Hosseinian
,
Pouria Assari
,
Mehdi Dehghan
The numerical solution of nonlinear delay Volterra integral equations using the thin plate spline collocation method with error analysis.
Comput. Appl. Math.
42 (2) (2023)
Fatemeh Asadi-Mehregan
,
Pouria Assari
,
Mehdi Dehghan
On the numerical solution of a population growth model of a species living in a closed system based on the moving least squares scheme.
Int. J. Comput. Math.
100 (8) (2023)
Fatemeh Asadi-Mehregan
,
Pouria Assari
,
Mehdi Dehghan
The numerical solution of a mathematical model of the Covid-19 pandemic utilizing a meshless local discrete Galerkin method.
Eng. Comput.
39 (5) (2023)
Pouria Assari
,
Fatemeh Asadi-Mehregan
The approximate solution of charged particle motion equations in oscillating magnetic fields using the local multiquadrics collocation method.
Eng. Comput.
37 (1) (2021)
Pouria Assari
,
Mehdi Dehghan
Application of dual-Chebyshev wavelets for the numerical solution of boundary integral equations with logarithmic singular kernels.
Eng. Comput.
35 (1) (2019)
Pouria Assari
On the numerical solution of two-dimensional integral equations using a meshless local discrete Galerkin scheme with error analysis.
Eng. Comput.
35 (3) (2019)
Pouria Assari
,
Mehdi Dehghan
Application of thin plate splines for solving a class of boundary integral equations arisen from Laplace's equations with nonlinear boundary conditions.
Int. J. Comput. Math.
96 (1) (2019)
Pouria Assari
,
Fatemeh Asadi-Mehregan
,
Salvatore Cuomo
A numerical scheme for solving a class of logarithmic integral equations arisen from two-dimensional Helmholtz equations using local thin plate splines.
Appl. Math. Comput.
356 (2019)
Pouria Assari
,
Mehdi Dehghan
A meshless local discrete Galerkin (MLDG) scheme for numerically solving two-dimensional nonlinear Volterra integral equations.
Appl. Math. Comput.
350 (2019)
Pouria Assari
,
Salvatore Cuomo
The numerical solution of fractional differential equations using the Volterra integral equation method based on thin plate splines.
Eng. Comput.
35 (4) (2019)
Pouria Assari
,
Fatemeh Asadi-Mehregan
,
Mehdi Dehghan
On the numerical solution of Fredholm integral equations utilizing the local radial basis function method.
Int. J. Comput. Math.
96 (7) (2019)
Pouria Assari
,
Mehdi Dehghan
A meshless Galerkin scheme for the approximate solution of nonlinear logarithmic boundary integral equations utilizing radial basis functions.
J. Comput. Appl. Math.
333 (2018)
Pouria Assari
,
Mehdi Dehghan
A meshless discrete collocation method for the numerical solution of singular-logarithmic boundary integral equations utilizing radial basis functions.
Appl. Math. Comput.
315 (2017)
Pouria Assari
,
Mehdi Dehghan
The numerical solution of two-dimensional logarithmic integral equations on normal domains using radial basis functions with polynomial precision.
Eng. Comput.
33 (4) (2017)
Pouria Assari
,
Hojatollah Adibi
,
Mehdi Dehghan
A meshless method based on the moving least squares (MLS) approximation for the numerical solution of two-dimensional nonlinear integral equations of the second kind on non-rectangular domains.
Numer. Algorithms
67 (2) (2014)
Pouria Assari
,
Hojatollah Adibi
,
Mehdi Dehghan
A meshless discrete Galerkin (MDG) method for the numerical solution of integral equations with logarithmic kernels.
J. Comput. Appl. Math.
267 (2014)
Pouria Assari
,
Hojatollah Adibi
,
Mehdi Dehghan
A meshless method for solving nonlinear two-dimensional integral equations of the second kind on non-rectangular domains using radial basis functions with error analysis.
J. Comput. Appl. Math.
239 (2013)