Login / Signup
Peter Y. Lu
ORCID
Publication Activity (10 Years)
Years Active: 2019-2023
Publications (10 Years): 15
Top Topics
Symbolic Regression
Action Models
Differential Equations
Unsupervised Learning
Top Venues
CoRR
IEEE Trans. Neural Networks Learn. Syst.
ICML
Trans. Mach. Learn. Res.
</>
Publications
</>
Elena Orlova
,
Aleksei Ustimenko
,
Ruoxi Jiang
,
Peter Y. Lu
,
Rebecca Willett
Deep Stochastic Mechanics.
CoRR
(2023)
Ruoxi Jiang
,
Peter Y. Lu
,
Elena Orlova
,
Rebecca Willett
Training neural operators to preserve invariant measures of chaotic attractors.
CoRR
(2023)
Viggo Moro
,
Charlotte Loh
,
Rumen Dangovski
,
Ali Ghorashi
,
Andrew Ma
,
Zhuo Chen
,
Peter Y. Lu
,
Thomas Christensen
,
Marin Soljacic
Multimodal Learning for Crystalline Materials.
CoRR
(2023)
Adriano Hernandez
,
Rumen Dangovski
,
Peter Y. Lu
,
Marin Soljacic
Model Stitching: Looking For Functional Similarity Between Representations.
CoRR
(2023)
Owen Dugan
,
Peter Y. Lu
,
Rumen Dangovski
,
Di Luo
,
Marin Soljacic
Q-Flow: Generative Modeling for Differential Equations of Open Quantum Dynamics with Normalizing Flows.
CoRR
(2023)
Owen M. Dugan
,
Peter Y. Lu
,
Rumen Dangovski
,
Di Luo
,
Marin Soljacic
Q-Flow: Generative Modeling for Differential Equations of Open Quantum Dynamics with Normalizing Flows.
ICML
(2023)
Ruoxi Jiang
,
Peter Y. Lu
,
Elena Orlova
,
Rebecca Willett
Training neural operators to preserve invariant measures of chaotic attractors.
NeurIPS
(2023)
Michael Zhang
,
Samuel Kim
,
Peter Y. Lu
,
Marin Soljacic
Deep Learning and Symbolic Regression for Discovering Parametric Equations.
CoRR
(2022)
Peter Y. Lu
,
Rumen Dangovski
,
Marin Soljacic
Discovering Conservation Laws using Optimal Transport and Manifold Learning.
CoRR
(2022)
Samuel Kim
,
Peter Y. Lu
,
Charlotte Loh
,
Jamie Smith
,
Jasper Snoek
,
Marin Soljacic
Deep Learning for Bayesian Optimization of Scientific Problems with High-Dimensional Structure.
Trans. Mach. Learn. Res.
2022 (2022)
Samuel Kim
,
Peter Y. Lu
,
Srijon Mukherjee
,
Michael Gilbert
,
Li Jing
,
Vladimir Ceperic
,
Marin Soljacic
Integration of Neural Network-Based Symbolic Regression in Deep Learning for Scientific Discovery.
IEEE Trans. Neural Networks Learn. Syst.
32 (9) (2021)
Samuel Kim
,
Peter Y. Lu
,
Charlotte Loh
,
Jamie Smith
,
Jasper Snoek
,
Marin Soljacic
Scalable and Flexible Deep Bayesian Optimization with Auxiliary Information for Scientific Problems.
CoRR
(2021)
Peter Y. Lu
,
Joan Ariño
,
Marin Soljacic
Discovering Sparse Interpretable Dynamics from Partial Observations.
CoRR
(2021)
Samuel Kim
,
Peter Y. Lu
,
Srijon Mukherjee
,
Michael Gilbert
,
Li Jing
,
Vladimir Ceperic
,
Marin Soljacic
Integration of Neural Network-Based Symbolic Regression in Deep Learning for Scientific Discovery.
CoRR
(2019)
Peter Y. Lu
,
Samuel Kim
,
Marin Soljacic
Extracting Interpretable Physical Parameters from Spatiotemporal Systems using Unsupervised Learning.
CoRR
(2019)