Login / Signup
Pengde Wang
ORCID
Publication Activity (10 Years)
Years Active: 2015-2024
Publications (10 Years): 9
Top Topics
Finite Element Method
Scale Spaces
Eikonal Equation
Hamilton Jacobi
Top Venues
J. Comput. Phys.
Numer. Algorithms
Appl. Math. Lett.
Math. Comput. Simul.
</>
Publications
</>
Yanjie Zhang
,
Ao Zhang
,
Pengde Wang
,
Xiao Wang
,
Jinqiao Duan
Analysis for a class of stochastic fractional nonlinear Schrödinger equations.
CoRR
(2024)
Longbin Zhao
,
Pengde Wang
Error estimates of piecewise Hermite collocation method for highly oscillatory Volterra integral equation with Bessel kernel.
Math. Comput. Simul.
196 (2022)
Pengde Wang
Fast exponential time differencing/spectral-Galerkin method for the nonlinear fractional Ginzburg-Landau equation with fractional Laplacian in unbounded domain.
Appl. Math. Lett.
112 (2021)
Pengde Wang
,
Zhiguo Xu
,
Jia Yin
Simple high-order boundary conditions for computing rogue waves in the nonlinear Schrödinger equation.
Comput. Phys. Commun.
251 (2020)
Longfei Li
,
Jingzhou Zhang
,
Pengde Wang
,
Pengjun Guo
基于节点兴趣和Q-learning的P2P网络搜索机制 (P2P Network Search Mechanism Based on Node Interest and Q-learning).
计算机科学
47 (2) (2020)
Meng Li
,
Chengming Huang
,
Pengde Wang
Galerkin finite element method for nonlinear fractional Schrödinger equations.
Numer. Algorithms
74 (2) (2017)
Pengde Wang
,
Chengming Huang
,
Longbin Zhao
Point-wise error estimate of a conservative difference scheme for the fractional Schrödinger equation.
J. Comput. Appl. Math.
306 (2016)
Pengde Wang
,
Chengming Huang
An implicit midpoint difference scheme for the fractional Ginzburg-Landau equation.
J. Comput. Phys.
312 (2016)
Pengde Wang
,
Chengming Huang
Split-step alternating direction implicit difference scheme for the fractional Schrödinger equation in two dimensions.
Comput. Math. Appl.
71 (5) (2016)
Pengde Wang
,
Chengming Huang
A conservative linearized difference scheme for the nonlinear fractional Schrödinger equation.
Numer. Algorithms
69 (3) (2015)
Pengde Wang
,
Chengming Huang
An energy conservative difference scheme for the nonlinear fractional Schrödinger equations.
J. Comput. Phys.
293 (2015)