Login / Signup
Nissrine Akkari
Publication Activity (10 Years)
Years Active: 2014-2023
Publications (10 Years): 11
Top Topics
Differential Equations
Reduced Order
Feature Selection
Convolutional Neural Networks
Top Venues
CoRR
Adv. Model. Simul. Eng. Sci.
SAI (2)
J. Comput. Phys.
</>
Publications
</>
Hamza Boukraichi
,
Nissrine Akkari
,
Fabien Casenave
,
David Ryckelynck
A priori compression of convolutional neural networks for wave simulators.
Eng. Appl. Artif. Intell.
126 (2023)
Hamza Boukraichi
,
Nissrine Akkari
,
Fabien Casenave
,
David Ryckelynck
A priori compression of convolutional neural networks for wave simulators.
CoRR
(2023)
Nissrine Akkari
,
Fabien Casenave
,
David Ryckelynck
,
Christian Rey
An updated Gappy-POD to capture non-parameterized geometrical variation in fluid dynamics problems.
Adv. Model. Simul. Eng. Sci.
9 (1) (2022)
Thomas Daniel
,
Fabien Casenave
,
Nissrine Akkari
,
Ali Ketata
,
David Ryckelynck
Physics-informed cluster analysis and a priori efficiency criterion for the construction of local reduced-order bases.
J. Comput. Phys.
458 (2022)
Thomas Daniel
,
Fabien Casenave
,
Nissrine Akkari
,
David Ryckelynck
Data augmentation and feature selection for automatic model recommendation in computational physics.
CoRR
(2021)
Thomas Daniel
,
Fabien Casenave
,
Nissrine Akkari
,
David Ryckelynck
,
Christian Rey
Uncertainty quantification for industrial design using dictionaries of reduced order models.
CoRR
(2021)
Hamza Boukraichi
,
Nissrine Akkari
,
Fabien Casenave
,
David Ryckelynck
Uncertainty quantification in a mechanical submodel driven by a Wasserstein-GAN.
CoRR
(2021)
Thomas Daniel
,
Fabien Casenave
,
Nissrine Akkari
,
David Ryckelynck
Optimal piecewise linear data compression for solutions of parametrized partial differential equations.
CoRR
(2021)
Thomas Daniel
,
Fabien Casenave
,
Nissrine Akkari
,
David Ryckelynck
Model order reduction assisted by deep neural networks (ROM-net).
Adv. Model. Simul. Eng. Sci.
7 (1) (2020)
Nissrine Akkari
,
Fabien Casenave
,
Marc-Eric Perrin
,
David Ryckelynck
Deep Convolutional Generative Adversarial Networks Applied to 2D Incompressible and Unsteady Fluid Flows.
SAI (2)
(2020)
Fabien Casenave
,
Nissrine Akkari
,
David Ryckelynck
Reduced Order Modeling Assisted by Convolutional Neural Network for Thermal Problems with Nonparametrized Geometrical Variability.
SAI (2)
(2020)
Nissrine Akkari
,
Aziz Hamdouni
,
Erwan Liberge
,
Mustapha Jazar
A mathematical and numerical study of the sensitivity of a reduced order model by POD (ROM-POD), for a 2D incompressible fluid flow.
J. Comput. Appl. Math.
270 (2014)
Nissrine Akkari
,
Aziz Hamdouni
,
Mustapha Jazar
Mathematical and numerical results on the sensitivity of the POD approximation relative to the Burgers equation.
Appl. Math. Comput.
247 (2014)
Nissrine Akkari
,
Aziz Hamdouni
,
Erwan Liberge
,
Mustapha Jazar
On the sensitivity of the POD technique for a parameterized quasi-nonlinear parabolic equation.
Adv. Model. Simul. Eng. Sci.
1 (1) (2014)