Login / Signup
Musa Çakir
ORCID
Publication Activity (10 Years)
Years Active: 2005-2022
Publications (10 Years): 7
2025
2016
Top Topics
2025
2016
Runge Kutta
2025
2016
Numerical Solution
2025
2016
Boundary Conditions
2025
2016
Differential Equations
Top Venues
Comput. Appl. Math.
J. Comput. Appl. Math.
Int. J. Comput. Math.
J. Appl. Math. Comput.
</>
Publications
</>
Muhammet Enes Durmaz
,
Musa Çakir
,
Ilhame Amirali
,
Gabil M. Amiraliyev
Numerical solution of singularly perturbed Fredholm integro-differential equations by homogeneous second order difference method.
J. Comput. Appl. Math.
412 (2022)
Musa Çakir
,
Yilmaz Ekinci
,
Erkan Cimen
A numerical approach for solving nonlinear Fredholm integro-differential equation with boundary layer.
Comput. Appl. Math.
41 (6) (2022)
Erkan Cimen
,
Musa Çakir
A uniform numerical method for solving singularly perturbed Fredholm integro-differential problem.
Comput. Appl. Math.
40 (2) (2021)
Musa Çakir
,
Derya Arslan
A new numerical approach for a singularly perturbed problem with two integral boundary conditions.
Comput. Appl. Math.
40 (6) (2021)
Musa Çakir
,
Gabil M. Amiraliyev
A second order numerical method for singularly perturbed problem with non-local boundary condition.
J. Appl. Math. Comput.
67 (1-2) (2021)
Gabil M. Amiraliyev
,
Erkan Cimen
,
Ilhame Amirali
,
Musa Çakir
High-order finite difference technique for delay pseudo-parabolic equations.
J. Comput. Appl. Math.
321 (2017)
Musa Çakir
,
Erkan Cimen
,
Ilhame Amirali
,
Gabil M. Amiraliyev
Numerical treatment of a quasilinear initial value problem with boundary layer.
Int. J. Comput. Math.
93 (11) (2016)
Musa Çakir
,
Gabil M. Amiraliyev
A Numerical Method for a Singularly Perturbed Three-Point Boundary Value Problem.
J. Appl. Math.
2010 (2010)
Musa Çakir
,
Gabil M. Amiraliyev
Non-polynomial spline for solution of boundary-value problems in plate deflection theory.
Int. J. Comput. Math.
84 (10) (2007)
Musa Çakir
,
Gabil M. Amiraliyev
A finite difference method for the singularly perturbed problem with nonlocal boundary condition.
Appl. Math. Comput.
160 (2) (2005)