Login / Signup
Michael A. Zaks
ORCID
Publication Activity (10 Years)
Years Active: 2000-2022
Publications (10 Years): 4
Top Topics
Synaptic Plasticity
Black Hole Search
Mobile Agents
Chaotic Dynamics
Top Venues
Commun. Nonlinear Sci. Numer. Simul.
Frontiers Comput. Neurosci.
J. Comput. Neurosci.
</>
Publications
</>
Alexander G. Korotkov
,
Tatiana A. Levanova
,
Michael A. Zaks
,
Andrey Maksimov
,
Grigory V. Osipov
Dynamics in a phase model of half-center oscillator: Two neurons with excitatory coupling.
Commun. Nonlinear Sci. Numer. Simul.
104 (2022)
Vander L. S. Freitas
,
Serhiy Yanchuk
,
Michael A. Zaks
,
Elbert E. N. Macau
Synchronization-based symmetric circular formations of mobile agents and the generation of chaotic trajectories.
Commun. Nonlinear Sci. Numer. Simul.
94 (2021)
Rodrigo Felipe De Oliveira Pena
,
Michael A. Zaks
,
Antonio Carlos Roque
Dynamics of spontaneous activity in random networks with multiple neuron subtypes and synaptic noise - Spontaneous activity in networks with synaptic noise.
J. Comput. Neurosci.
45 (1) (2018)
Petar Tomov
,
Rodrigo Felipe De Oliveira Pena
,
Antonio Carlos Roque
,
Michael A. Zaks
Mechanisms of Self-Sustained Oscillatory States in Hierarchical Modular Networks with Mixtures of Electrophysiological Cell Types.
Frontiers Comput. Neurosci.
10 (2016)
Bekbolat Medetov
,
R. Gregor Weiß
,
Zeinulla Zh. Zhanabaev
,
Michael A. Zaks
Numerically induced bursting in a set of coupled neuronal oscillators.
Commun. Nonlinear Sci. Numer. Simul.
20 (3) (2015)
Petar Tomov
,
Rodrigo Felipe De Oliveira Pena
,
Michael A. Zaks
,
Antonio Carlos Roque
Sustained oscillations, irregular firing, and chaotic dynamics in hierarchical modular networks with mixtures of electrophysiological cell types.
Frontiers Comput. Neurosci.
8 (2014)
Michael A. Zaks
,
Alla Podolny
,
Alexander A. Nepomnyashchy
,
Alexander A. Golovin
Periodic Stationary Patterns Governed by a Convective Cahn-Hilliard Equation.
SIAM J. Appl. Math.
66 (2) (2005)
Michael A. Zaks
,
Eun-Hyoung Park
,
Jürgen Kurths
On phase Synchronization by periodic Force in Chaotic oscillators with saddle Equilibria.
Int. J. Bifurc. Chaos
10 (11) (2000)