Login / Signup
Meike Nauta
ORCID
Publication Activity (10 Years)
Years Active: 2017-2024
Publications (10 Years): 24
Top Topics
Neural Network
Convolutional Neural Networks
Evaluation Methods
Top Venues
CoRR
CVPR
Artif. Intell. Medicine
KDH@ECAI
</>
Publications
</>
Lisa Anita De Santi
,
Jörg Schlötterer
,
Michael Scheschenja
,
Joel Wessendorf
,
Meike Nauta
,
Vincenzo Positano
,
Christin Seifert
PIPNet3D: Interpretable Detection of Alzheimer in MRI Scans.
CoRR
(2024)
Lisa Anita De Santi
,
Jörg Schlötterer
,
Meike Nauta
,
Vincenzo Positano
,
Christin Seifert
Patch-based Intuitive Multimodal Prototypes Network (PIMPNet) for Alzheimer's Disease classification.
CoRR
(2024)
Una M. Kelly
,
Meike Nauta
,
Lu Liu
,
Luuk J. Spreeuwers
,
Raymond N. J. Veldhuis
Worst-Case Morphs using Wasserstein ALI and Improved MIPGAN.
CoRR
(2023)
Meike Nauta
,
Johannes H. Hegeman
,
Jeroen Geerdink
,
Jörg Schlötterer
,
Maurice van Keulen
,
Christin Seifert
Interpreting and Correcting Medical Image Classification with PIP-Net.
ECAI Workshops (1)
(2023)
Meike Nauta
,
Jan Trienes
,
Shreyasi Pathak
,
Elisa Nguyen
,
Michelle Peters
,
Yasmin Schmitt
,
Jörg Schlötterer
,
Maurice van Keulen
,
Christin Seifert
From Anecdotal Evidence to Quantitative Evaluation Methods: A Systematic Review on Evaluating Explainable AI.
ACM Comput. Surv.
55 (13s) (2023)
Meike Nauta
,
Jörg Schlötterer
,
Maurice van Keulen
,
Christin Seifert
PIP-Net: Patch-Based Intuitive Prototypes for Interpretable Image Classification.
CVPR
(2023)
Meike Nauta
,
Christin Seifert
The Co-12 Recipe for Evaluating Interpretable Part-Prototype Image Classifiers.
xAI (1)
(2023)
Elisa Nguyen
,
Meike Nauta
,
Gwenn Englebienne
,
Christin Seifert
Feature Attribution Explanations for Spiking Neural Networks.
CogMI
(2023)
Elisa Nguyen
,
Meike Nauta
,
Gwenn Englebienne
,
Christin Seifert
Feature Attribution Explanations for Spiking Neural Networks.
CoRR
(2023)
Meike Nauta
,
Christin Seifert
The Co-12 Recipe for Evaluating Interpretable Part-Prototype Image Classifiers.
CoRR
(2023)
Phuong Quynh Le
,
Meike Nauta
,
Van Bach Nguyen
,
Shreyasi Pathak
,
Jörg Schlötterer
,
Christin Seifert
Benchmarking eXplainable AI - A Survey on Available Toolkits and Open Challenges.
IJCAI
(2023)
Meike Nauta
,
Johannes H. Hegeman
,
Jeroen Geerdink
,
Jörg Schlötterer
,
Maurice van Keulen
,
Christin Seifert
Interpreting and Correcting Medical Image Classification with PIP-Net.
CoRR
(2023)
Olivier Paalvast
,
Meike Nauta
,
Marion Koelle
,
Jeroen Geerdink
,
Onno Vijlbrief
,
Johannes H. Hegeman
,
Christin Seifert
Radiology report generation for proximal femur fractures using deep classification and language generation models.
Artif. Intell. Medicine
128 (2022)
Meike Nauta
,
Jan Trienes
,
Shreyasi Pathak
,
Elisa Nguyen
,
Michelle Peters
,
Yasmin Schmitt
,
Jörg Schlötterer
,
Maurice van Keulen
,
Christin Seifert
From Anecdotal Evidence to Quantitative Evaluation Methods: A Systematic Review on Evaluating Explainable AI.
CoRR
(2022)
Meike Nauta
,
Ron van Bree
,
Christin Seifert
Neural Prototype Trees for Interpretable Fine-Grained Image Recognition.
CVPR
(2021)
Meike Nauta
,
Annemarie Jutte
,
Jesper C. Provoost
,
Christin Seifert
This Looks Like That, Because ... Explaining Prototypes for Interpretable Image Recognition.
PKDD/ECML Workshops (1)
(2021)
Meike Nauta
,
Annemarie Jutte
,
Jesper C. Provoost
,
Christin Seifert
This Looks Like That, Because ... Explaining Prototypes for Interpretable Image Recognition.
CoRR
(2020)
Meike Nauta
,
Ron van Bree
,
Christin Seifert
Neural Prototype Trees for Interpretable Fine-grained Image Recognition.
CoRR
(2020)
Meike Nauta
,
Michel van Putten
,
Marleen C. Tjepkema-Cloostermans
,
Jeroen Bos
,
Maurice van Keulen
,
Christin Seifert
Interactive Explanations of Internal Representations of Neural Network Layers: An Exploratory Study on Outcome Prediction of Comatose Patients.
KDH@ECAI
(2020)
Abraham Theodorus
,
Meike Nauta
,
Christin Seifert
Evaluating CNN interpretability on sketch classification.
ICMV
(2019)
Meike Nauta
,
Doina Bucur
,
Christin Seifert
Causal Discovery with Attention-Based Convolutional Neural Networks.
Mach. Learn. Knowl. Extr.
1 (1) (2019)
Michelle Peters
,
Lindsay Kempen
,
Meike Nauta
,
Christin Seifert
Visualising the Training Process of Convolutional Neural Networks for Non-Experts.
BNAIC/BENELEARN
(2019)
Meike Nauta
,
Doina Bucur
,
Mariëlle Stoelinga
LIFT: Learning Fault Trees from Observational Data.
QEST
(2018)
Meike Nauta
,
Mena B. Habib
,
Maurice van Keulen
Detecting Hacked Twitter Accounts based on Behavioural Change.
WEBIST
(2017)