Login / Signup
Martin Jullum
ORCID
Publication Activity (10 Years)
Years Active: 2019-2024
Publications (10 Years): 17
Top Topics
Predictive Model
Top Venues
CoRR
Data Min. Knowl. Discov.
EXTRAAMAS@AAMAS
CD-MAKE
</>
Publications
</>
Lars Henry Berge Olsen
,
Ingrid Kristine Glad
,
Martin Jullum
,
Kjersti Aas
A comparative study of methods for estimating model-agnostic Shapley value explanations.
Data Min. Knowl. Discov.
38 (4) (2024)
Annabelle Redelmeier
,
Martin Jullum
,
Kjersti Aas
,
Anders Løland
MCCE: Monte Carlo sampling of valid and realistic counterfactual explanations for tabular data.
Data Min. Knowl. Discov.
38 (4) (2024)
Martin Jullum
,
Jacob Sjødin
,
Robindra Prabhu
,
Anders Løland
eXplego: An interactive Tool that Helps you Select Appropriate XAI-methods for your Explainability Needs.
xAI (Late-breaking Work, Demos, Doctoral Consortium)
(2023)
Fredrik Johannessen
,
Martin Jullum
Finding Money Launderers Using Heterogeneous Graph Neural Networks.
CoRR
(2023)
Lars Henry Berge Olsen
,
Ingrid Kristine Glad
,
Martin Jullum
,
Kjersti Aas
A Comparative Study of Methods for Estimating Conditional Shapley Values and When to Use Them.
CoRR
(2023)
Lars H. B. Olsen
,
Ingrid Kristine Glad
,
Martin Jullum
,
Kjersti Aas
Using Shapley Values and Variational Autoencoders to Explain Predictive Models with Dependent Mixed Features.
J. Mach. Learn. Res.
23 (2022)
Lars Henry Berge Olsen
,
Ingrid Kristine Glad
,
Martin Jullum
,
Kjersti Aas
Using Shapley Values and Variational Autoencoders to Explain Predictive Models with Dependent Mixed Features.
CoRR
(2021)
Kjersti Aas
,
Thomas Nagler
,
Martin Jullum
,
Anders Løland
Explaining predictive models using Shapley values and non-parametric vine copulas.
CoRR
(2021)
Kary Främling
,
Marcus Westberg
,
Martin Jullum
,
Manik Madhikermi
,
Avleen Malhi
Comparison of Contextual Importance and Utility with LIME and Shapley Values.
EXTRAAMAS@AAMAS
(2021)
Kjersti Aas
,
Martin Jullum
,
Anders Løland
Explaining individual predictions when features are dependent: More accurate approximations to Shapley values.
Artif. Intell.
298 (2021)
Martin Jullum
,
Annabelle Redelmeier
,
Kjersti Aas
groupShapley: Efficient prediction explanation with Shapley values for feature groups.
CoRR
(2021)
Annabelle Redelmeier
,
Martin Jullum
,
Kjersti Aas
,
Anders Løland
MCCE: Monte Carlo sampling of realistic counterfactual explanations.
CoRR
(2021)
Dag Tjøstheim
,
Martin Jullum
,
Anders Løland
Statistical embedding: Beyond principal components.
CoRR
(2021)
Annabelle Redelmeier
,
Martin Jullum
,
Kjersti Aas
Explaining predictive models with mixed features using Shapley values and conditional inference trees.
CoRR
(2020)
Annabelle Redelmeier
,
Martin Jullum
,
Kjersti Aas
Explaining Predictive Models with Mixed Features Using Shapley Values and Conditional Inference Trees.
CD-MAKE
(2020)
Kjersti Aas
,
Martin Jullum
,
Anders Løland
Explaining individual predictions when features are dependent: More accurate approximations to Shapley values.
CoRR
(2019)
Nikolai Sellereite
,
Martin Jullum
shapr: An R-package for explaining machine learning models with dependence-aware Shapley values.
J. Open Source Softw.
5 (46) (2019)