Login / Signup
Manuel Iñarrea
ORCID
Publication Activity (10 Years)
Years Active: 2000-2022
Publications (10 Years): 6
Top Topics
Waveguide
Nonlinear Dynamics
Latest Developments
Lyapunov Stability
Top Venues
Commun. Nonlinear Sci. Numer. Simul.
Appl. Math. Comput.
</>
Publications
</>
J. Pablo Salas
,
Víctor Lanchares
,
Manuel Iñarrea
,
D. Farrelly
Coriolis coupling in a Hénon-Heiles system.
Commun. Nonlinear Sci. Numer. Simul.
111 (2022)
J. Pablo Salas
,
Manuel Iñarrea
,
Víctor Lanchares
,
Jesús F. Palacián
,
Patricia Yanguas
Magnetic confinement of a neutral atom in a double-wire waveguide: A nonlinear dynamics approach.
Commun. Nonlinear Sci. Numer. Simul.
101 (2021)
Rosario González-Férez
,
Manuel Iñarrea
,
J. Pablo Salas
,
Peter Schmelcher
Nonlinear dynamics and energy transfer for two rotating dipoles in an external field: A complete dimensional analysis.
Commun. Nonlinear Sci. Numer. Simul.
82 (2020)
Manuel Iñarrea
,
Víctor Lanchares
,
Jesús F. Palacián
,
Ana I. Pascual
,
J. Pablo Salas
,
Patricia Yanguas
Effects of a soft-core coulomb potential on the dynamics of a hydrogen atom near a metal surface.
Commun. Nonlinear Sci. Numer. Simul.
68 (2019)
Manuel Iñarrea
,
Víctor Lanchares
,
Ana I. Pascual
,
Antonio Elipe
Stability of the permanent rotations of an asymmetric gyrostat in a uniform Newtonian field.
Appl. Math. Comput.
293 (2017)
Manuel Iñarrea
,
Víctor Lanchares
,
Jesús F. Palacián
,
Ana I. Pascual
,
J. Pablo Salas
,
Patricia Yanguas
Lyapunov stability for a generalized Hénon-Heiles system in a rotating reference frame.
Appl. Math. Comput.
253 (2015)
Manuel Iñarrea
Chaotic pitch Motion of a Magnetic Spacecraft with viscous Drag in an elliptical Polar Orbit.
Int. J. Bifurc. Chaos
21 (7) (2011)
Manuel Iñarrea
,
Víctor Lanchares
,
Vassilios M. Rothos
,
J. Pablo Salas
Chaotic Rotations of an Asymmetric Body with Time-Dependent Moments of Inertia and Viscous Drag.
Int. J. Bifurc. Chaos
13 (2) (2003)
Manuel Iñarrea
,
Víctor Lanchares
Chaos in the Reorientation Process of a Dual-Spin Spacecraft with Time-Dependent moments of Inertia.
Int. J. Bifurc. Chaos
10 (5) (2000)