​
Login / Signup
Kaili Ma
ORCID
Publication Activity (10 Years)
Years Active: 2020-2024
Publications (10 Years): 19
Top Topics
Risk Minimization
Denoising
Neural Network
Graph Clustering
Top Venues
CoRR
ICLR
Trans. Mach. Learn. Res.
NeurIPS
</>
Publications
</>
Kaili Ma
,
Han Yang
,
Shanchao Yang
,
Kangfei Zhao
,
Lanqing Li
,
Yongqiang Chen
,
Junzhou Huang
,
James Cheng
,
Yu Rong
Solving the non-submodular network collapse problems via Decision Transformer.
Neural Networks
176 (2024)
Barakeel Fanseu Kamhoua
,
Lin Zhang
,
Kaili Ma
,
James Cheng
,
Bo Li
,
Bo Han
GRACE: A General Graph Convolution Framework for Attributed Graph Clustering.
ACM Trans. Knowl. Discov. Data
17 (3) (2023)
Kaili Ma
,
Garry Yang
,
Han Yang
,
Yongqiang Chen
,
James Cheng
Calibrating and Improving Graph Contrastive Learning.
Trans. Mach. Learn. Res.
2023 (2023)
Shanchao Yang
,
Kaili Ma
,
Baoxiang Wang
,
Tianshu Yu
,
Hongyuan Zha
Learning to Boost Resilience of Complex Networks via Neural Edge Rewiring.
Trans. Mach. Learn. Res.
2023 (2023)
Yongqiang Chen
,
Kaiwen Zhou
,
Yatao Bian
,
Binghui Xie
,
Bingzhe Wu
,
Yonggang Zhang
,
Kaili Ma
,
Han Yang
,
Peilin Zhao
,
Bo Han
,
James Cheng
Pareto Invariant Risk Minimization: Towards Mitigating the Optimization Dilemma in Out-of-Distribution Generalization.
ICLR
(2023)
Barakeel Fanseu Kamhoua
,
Lin Zhang
,
Yongqiang Chen
,
Han Yang
,
Kaili Ma
,
Bo Han
,
Bo Li
,
James Cheng
Exact Shape Correspondence via 2D graph convolution.
NeurIPS
(2022)
Yifan Hou
,
Jian Zhang
,
James Cheng
,
Kaili Ma
,
Richard T. B. Ma
,
Hongzhi Chen
,
Ming-Chang Yang
Measuring and Improving the Use of Graph Information in Graph Neural Networks.
CoRR
(2022)
Yongqiang Chen
,
Han Yang
,
Yonggang Zhang
,
Kaili Ma
,
Tongliang Liu
,
Bo Han
,
James Cheng
Understanding and Improving Graph Injection Attack by Promoting Unnoticeability.
ICLR
(2022)
Yongqiang Chen
,
Kaiwen Zhou
,
Yatao Bian
,
Binghui Xie
,
Kaili Ma
,
Yonggang Zhang
,
Han Yang
,
Bo Han
,
James Cheng
Pareto Invariant Risk Minimization.
CoRR
(2022)
Yongqiang Chen
,
Yonggang Zhang
,
Yatao Bian
,
Han Yang
,
Kaili Ma
,
Binghui Xie
,
Tongliang Liu
,
Bo Han
,
James Cheng
Learning Causally Invariant Representations for Out-of-Distribution Generalization on Graphs.
NeurIPS
(2022)
Yongqiang Chen
,
Han Yang
,
Yonggang Zhang
,
Kaili Ma
,
Tongliang Liu
,
Bo Han
,
James Cheng
Understanding and Improving Graph Injection Attack by Promoting Unnoticeability.
CoRR
(2022)
Yongqiang Chen
,
Yonggang Zhang
,
Han Yang
,
Kaili Ma
,
Binghui Xie
,
Tongliang Liu
,
Bo Han
,
James Cheng
Invariance Principle Meets Out-of-Distribution Generalization on Graphs.
CoRR
(2022)
Han Yang
,
Kaili Ma
,
James Cheng
Rethinking Graph Regularization for Graph Neural Networks.
AAAI
(2021)
Barakeel Fanseu Kamhoua
,
Lin Zhang
,
Kaili Ma
,
James Cheng
,
Bo Li
,
Bo Han
HyperGraph Convolution Based Attributed HyperGraph Clustering.
CIKM
(2021)
Shanchao Yang
,
Kaili Ma
,
Baoxiang Wang
,
Hongyuan Zha
Edge Rewiring Goes Neural: Boosting Network Resilience via Policy Gradient.
CoRR
(2021)
Kaili Ma
,
Haochen Yang
,
Han Yang
,
Tatiana Jin
,
Pengfei Chen
,
Yongqiang Chen
,
Barakeel Fanseu Kamhoua
,
James Cheng
Improving Graph Representation Learning by Contrastive Regularization.
CoRR
(2021)
Yifan Hou
,
Jian Zhang
,
James Cheng
,
Kaili Ma
,
Richard T. B. Ma
,
Hongzhi Chen
,
Ming-Chang Yang
Measuring and Improving the Use of Graph Information in Graph Neural Networks.
ICLR
(2020)
Guoji Fu
,
Yifan Hou
,
Jian Zhang
,
Kaili Ma
,
Barakeel Fanseu Kamhoua
,
James Cheng
Understanding Graph Neural Networks from Graph Signal Denoising Perspectives.
CoRR
(2020)
Han Yang
,
Kaili Ma
,
James Cheng
Rethinking Graph Regularization For Graph Neural Networks.
CoRR
(2020)