Login / Signup
José A. Sáez
ORCID
Publication Activity (10 Years)
Years Active: 2010-2024
Publications (10 Years): 14
Top Topics
Class Noise
Class Imbalance
Nearest Neighbor
Noisy Data
Top Venues
HAIS
Pattern Recognit.
IEEE Access
Neurocomputing
</>
Publications
</>
Juan Martín
,
José A. Sáez
,
Emilio Corchado
Tackling the problem of noisy IoT sensor data in smart agriculture: Regression noise filters for enhanced evapotranspiration prediction.
Expert Syst. Appl.
237 (Part B) (2024)
José A. Sáez
,
Emilio Corchado
ANCES: A novel method to repair attribute noise in classification problems.
Pattern Recognit.
121 (2022)
Juan Martín
,
José A. Sáez
,
Emilio Corchado
On the Regressand Noise Problem: Model Robustness and Synergy With Regression-Adapted Noise Filters.
IEEE Access
9 (2021)
Juan Martín
,
José A. Sáez
,
Emilio Corchado
On the suitability of stacking-based ensembles in smart agriculture for evapotranspiration prediction.
Appl. Soft Comput.
108 (2021)
José A. Sáez
,
Pablo J. Villacorta
,
Emilio Corchado
Dataset Weighting via Intrinsic Data Characteristics for Pairwise Statistical Comparisons in Classification.
HAIS
(2019)
José A. Sáez
,
Emilio Corchado
A Meta-Learning Recommendation System for Characterizing Unsupervised Problems: On Using Quality Indices to Describe Data Conformations.
IEEE Access
7 (2019)
José A. Sáez
,
Emilio Corchado
KSUFS: A Novel Unsupervised Feature Selection Method Based on Statistical Tests for Standard and Big Data Problems.
IEEE Access
7 (2019)
José A. Sáez
,
Mikel Galar
,
Bartosz Krawczyk
Addressing the Overlapping Data Problem in Classification Using the One-vs-One Decomposition Strategy.
IEEE Access
7 (2019)
José A. Sáez
,
Héctor Quintián
,
Bartosz Krawczyk
,
Michal Wozniak
,
Emilio Corchado
Multi-class Imbalanced Data Oversampling for Vertebral Column Pathologies Classification.
HAIS
(2018)
José A. Sáez
,
Julián Luengo
,
Francisco Herrera
Evaluating the classifier behavior with noisy data considering performance and robustness: The Equalized Loss of Accuracy measure.
Neurocomputing
176 (2016)
José A. Sáez
,
Mikel Galar
,
Julián Luengo
,
Francisco Herrera
INFFC: An iterative class noise filter based on the fusion of classifiers with noise sensitivity control.
Inf. Fusion
27 (2016)
José A. Sáez
,
Bartosz Krawczyk
,
Michal Wozniak
Analyzing the oversampling of different classes and types of examples in multi-class imbalanced datasets.
Pattern Recognit.
57 (2016)
Bartosz Krawczyk
,
José A. Sáez
,
Michal Wozniak
Tackling label noise with multi-class decomposition using fuzzy one-class support vector machines.
FUZZ-IEEE
(2016)
José A. Sáez
,
Bartosz Krawczyk
,
Michal Wozniak
On the Influence of Class Noise in Medical Data Classification: Treatment Using Noise Filtering Methods.
Appl. Artif. Intell.
30 (6) (2016)
José A. Sáez
,
Julián Luengo
,
Jerzy Stefanowski
,
Francisco Herrera
SMOTE-IPF: Addressing the noisy and borderline examples problem in imbalanced classification by a re-sampling method with filtering.
Inf. Sci.
291 (2015)
Luís Paulo F. Garcia
,
José A. Sáez
,
Julián Luengo
,
Ana Carolina Lorena
,
André C. P. L. F. de Carvalho
,
Francisco Herrera
Using the One-vs-One decomposition to improve the performance of class noise filters via an aggregation strategy in multi-class classification problems.
Knowl. Based Syst.
90 (2015)
Pablo J. Villacorta
,
José A. Sáez
SRCS: Statistical Ranking Color Scheme for Visualizing Parameterized Multiple Pairwise Comparisons with R.
R J.
7 (2) (2015)
José A. Sáez
,
Joaquín Derrac
,
Julián Luengo
,
Francisco Herrera
Statistical computation of feature weighting schemes through data estimation for nearest neighbor classifiers.
Pattern Recognit.
47 (12) (2014)
José A. Sáez
,
Julián Luengo
,
Jerzy Stefanowski
,
Francisco Herrera
Managing Borderline and Noisy Examples in Imbalanced Classification by Combining SMOTE with Ensemble Filtering.
IDEAL
(2014)
José A. Sáez
,
Mikel Galar
,
Julián Luengo
,
Francisco Herrera
Analyzing the presence of noise in multi-class problems: alleviating its influence with the One-vs-One decomposition.
Knowl. Inf. Syst.
38 (1) (2014)
Isaac Triguero
,
José A. Sáez
,
Julián Luengo
,
Salvador García
,
Francisco Herrera
On the characterization of noise filters for self-training semi-supervised in nearest neighbor classification.
Neurocomputing
132 (2014)
José A. Sáez
,
Joaquín Derrac
,
Julián Luengo
,
Francisco Herrera
Improving the Behavior of the Nearest Neighbor Classifier against Noisy Data with Feature Weighting Schemes.
HAIS
(2014)
José A. Sáez
,
Mikel Galar
,
Julián Luengo
,
Francisco Herrera
An Experimental Case of Study on the Behavior of Multiple Classifier Systems with Class Noise Datasets.
HAIS
(2013)
José A. Sáez
,
Mikel Galar
,
Julián Luengo
,
Francisco Herrera
Tackling the problem of classification with noisy data using Multiple Classifier Systems: Analysis of the performance and robustness.
Inf. Sci.
247 (2013)
José A. Sáez
,
Julián Luengo
,
Francisco Herrera
Predicting noise filtering efficacy with data complexity measures for nearest neighbor classification.
Pattern Recognit.
46 (1) (2013)
Jose G. Moreno-Torres
,
José A. Sáez
,
Francisco Herrera
Study on the Impact of Partition-Induced Dataset Shift on k -Fold Cross-Validation.
IEEE Trans. Neural Networks Learn. Syst.
23 (8) (2012)
José A. Sáez
,
Mikel Galar
,
Julián Luengo
,
Francisco Herrera
A First Study on Decomposition Strategies with Data with Class Noise Using Decision Trees.
HAIS (2)
(2012)
Julián Luengo
,
José A. Sáez
,
Francisco Herrera
Missing data imputation for fuzzy rule-based classification systems.
Soft Comput.
16 (5) (2012)
José A. Sáez
,
Julián Luengo
,
Francisco Herrera
Fuzzy Rule Based Classification Systems versus crisp robust learners trained in presence of class noise's effects: A case of study.
ISDA
(2011)
José A. Sáez
,
Julián Luengo
,
Francisco Herrera
A first study on the noise impact in classes for Fuzzy Rule Based Classification Systems.
ISKE
(2010)