Login / Signup
Jongmo Sung
ORCID
Publication Activity (10 Years)
Years Active: 2009-2024
Publications (10 Years): 15
Top Topics
Quantization Noise
Bayes Rule
Loss Function
Lightweight
Top Venues
CoRR
ICASSP
INTERSPEECH
IEEE Signal Process. Lett.
</>
Publications
</>
Seungmin Shin
,
Joon Byun
,
Jongmo Sung
,
Seungkwon Beack
,
Youngcheol Park
Quantization Noise Masking in Perceptual Neural Audio Coder.
ICASSP
(2024)
Joon Byun
,
Seungmin Shin
,
Jongmo Sung
,
Seungkwon Beack
,
Youngcheol Park
Perceptual Improvement of Deep Neural Network (DNN) Speech Coder Using Parametric and Non-parametric Density Models.
INTERSPEECH
(2023)
Joon Byun
,
Seungmin Shin
,
Youngcheol Park
,
Jongmo Sung
,
Seungkwon Beack
A Perceptual Neural Audio Coder with a Mean-Scale Hyperprior.
ICASSP
(2023)
Seungmin Shin
,
Joon Byun
,
Youngcheol Park
,
Jongmo Sung
,
Seungkwon Beack
Deep Neural Network (DNN) Audio Coder Using A Perceptually Improved Training Method.
ICASSP
(2022)
Joon Byun
,
Seungmin Shin
,
Jongmo Sung
,
Seungkwon Beack
,
Youngcheol Park
Optimization of Deep Neural Network (DNN) Speech Coder Using a Multi Time Scale Perceptual Loss Function.
INTERSPEECH
(2022)
Kai Zhen
,
Jongmo Sung
,
Mi Suk Lee
,
Seungkwon Beack
,
Minje Kim
Scalable and Efficient Neural Speech Coding: A Hybrid Design.
IEEE ACM Trans. Audio Speech Lang. Process.
30 (2022)
Joon Byun
,
Seungmin Shin
,
Youngcheol Park
,
Jongmo Sung
,
Seungkwon Beack
Development of a Psychoacoustic Loss Function for the Deep Neural Network (DNN)-Based Speech Coder.
Interspeech
(2021)
Kai Zhen
,
Mi Suk Lee
,
Jongmo Sung
,
Seungkwon Beack
,
Minje Kim
Psychoacoustic Calibration of Loss Functions for Efficient End-to-End Neural Audio Coding.
CoRR
(2021)
Kai Zhen
,
Jongmo Sung
,
Mi Suk Lee
,
Seungkwon Beack
,
Minje Kim
Scalable and Efficient Neural Speech Coding.
CoRR
(2021)
Kai Zhen
,
Mi Suk Lee
,
Jongmo Sung
,
Seungkwon Beack
,
Minje Kim
Efficient And Scalable Neural Residual Waveform Coding With Collaborative Quantization.
CoRR
(2020)
Kai Zhen
,
Mi Suk Lee
,
Jongmo Sung
,
Seungkwon Beack
,
Minje Kim
Efficient and Scalable Neural Residual Waveform Coding with Collaborative Quantization.
ICASSP
(2020)
Kai Zhen
,
Mi Suk Lee
,
Jongmo Sung
,
Seungkwon Beack
,
Minje Kim
Psychoacoustic Calibration of Loss Functions for Efficient End-to-End Neural Audio Coding.
IEEE Signal Process. Lett.
27 (2020)
Kai Zhen
,
Jongmo Sung
,
Mi Suk Lee
,
Seungkwon Beack
,
Minje Kim
Cascaded Cross-Module Residual Learning Towards Lightweight End-to-End Speech Coding.
INTERSPEECH
(2019)
Kai Zhen
,
Jongmo Sung
,
Mi Suk Lee
,
Seungkwon Beack
,
Minje Kim
Cascaded Cross-Module Residual Learning towards Lightweight End-to-End Speech Coding.
CoRR
(2019)
Kai Zhen
,
Aswin Sivaraman
,
Jongmo Sung
,
Minje Kim
On Psychoacoustically Weighted Cost Functions Towards Resource-Efficient Deep Neural Networks for Speech Denoising.
CoRR
(2018)
Lei Miao
,
Zexin Liu
,
Chen Hu
,
Vaclav Eksler
,
Stéphane Ragot
,
Claude Lamblin
,
Balázs Kövesi
,
Jongmo Sung
,
Masahiro Fukui
,
Shigeaki Sasaki
,
Yusuke Hiwasaki
G.711.1 Annex D and G.722 Annex B - New ITU-T superwideband codecs.
ICASSP
(2011)
Young Han Lee
,
Deok Su Kim
,
Hong Kook Kim
,
Jongmo Sung
,
Mi Suk Lee
,
Hyun Joo Bae
Bandwidth-Scalable Stereo Audio Coding Based on a Layered Structure.
IEICE Trans. Inf. Syst.
(12) (2009)