Login / Signup
Jonathan Gair
ORCID
Publication Activity (10 Years)
Years Active: 2020-2024
Publications (10 Years): 8
Top Topics
Network Flow
Bayesian Inference
Machine Learning
Importance Sampling
Top Venues
CoRR
Mach. Learn. Sci. Technol.
ICLR
</>
Publications
</>
Maximilian Dax
,
Stephen R. Green
,
Jonathan Gair
,
Nihar Gupte
,
Michael Pürrer
,
Vivien Raymond
,
Jonas Wildberger
,
Jakob H. Macke
,
Alessandra Buonanno
,
Bernhard Schölkopf
Real-time gravitational-wave inference for binary neutron stars using machine learning.
CoRR
(2024)
Maximilian Dax
,
Stephen R. Green
,
Jonathan Gair
,
Michael Pürrer
,
Jonas Wildberger
,
Jakob H. Macke
,
Alessandra Buonanno
,
Bernhard Schölkopf
Neural Importance Sampling for Rapid and Reliable Gravitational-Wave Inference.
CoRR
(2022)
Jonas Wildberger
,
Maximilian Dax
,
Stephen R. Green
,
Jonathan Gair
,
Michael Pürrer
,
Jakob H. Macke
,
Alessandra Buonanno
,
Bernhard Schölkopf
Adapting to noise distribution shifts in flow-based gravitational-wave inference.
CoRR
(2022)
Maximilian Dax
,
Stephen R. Green
,
Jonathan Gair
,
Michael Deistler
,
Bernhard Schölkopf
,
Jakob H. Macke
Group equivariant neural posterior estimation.
ICLR
(2022)
Maximilian Dax
,
Stephen R. Green
,
Jonathan Gair
,
Jakob H. Macke
,
Alessandra Buonanno
,
Bernhard Schölkopf
Real-time gravitational-wave science with neural posterior estimation.
CoRR
(2021)
Stephen R. Green
,
Jonathan Gair
Complete parameter inference for GW150914 using deep learning.
Mach. Learn. Sci. Technol.
2 (3) (2021)
Maximilian Dax
,
Stephen R. Green
,
Jonathan Gair
,
Michael Deistler
,
Bernhard Schölkopf
,
Jakob H. Macke
Group equivariant neural posterior estimation.
CoRR
(2021)
Stephen R. Green
,
Christine Simpson
,
Jonathan Gair
Gravitational-wave parameter estimation with autoregressive neural network flows.
CoRR
(2020)