Login / Signup
Jean Daniel Mukam
ORCID
Publication Activity (10 Years)
Years Active: 2018-2024
Publications (10 Years): 9
Top Topics
Convergence Analysis
Noisy Images
Additive Noise
Finite Element
Top Venues
CoRR
Comput. Math. Appl.
Appl. Math. Comput.
Comput. Methods Appl. Math.
</>
Publications
</>
Lubomír Bañas
,
Jean Daniel Mukam
Numerical approximation of the stochastic Cahn-Hilliard equation with space-time white noise near the sharp interface limit.
CoRR
(2024)
Jean Daniel Mukam
,
Antoine Tambue
Weak Convergence of the Rosenbrock Semi-implicit Method for Semilinear Parabolic SPDEs Driven by Additive Noise.
Comput. Methods Appl. Math.
24 (2) (2024)
Lubomír Bañas
,
Jean Daniel Mukam
Improved estimates for the sharp interface limit of the stochastic Cahn-Hilliard equation with space-time white noise.
CoRR
(2023)
Antoine Tambue
,
Jean Daniel Mukam
Optimal error estimate of the finite element approximation of second order semilinear non-autonomous parabolic PDEs.
CoRR
(2020)
Antoine Tambue
,
Jean Daniel Mukam
Strong convergence of the linear implicit Euler method for the finite element discretization of semilinear SPDEs driven by multiplicative or additive noise.
Appl. Math. Comput.
346 (2019)
Jean Daniel Mukam
,
Antoine Tambue
Strong convergence of the backward Euler approximation for the finite element discretization of semilinear parabolic SPDEs with non-global Lipschitz drift driven by additive noise.
CoRR
(2019)
Jean Daniel Mukam
,
Antoine Tambue
Optimal strong convergence rates of numerical methods for semilinear parabolic SPDE driven by Gaussian noise and Poisson random measure.
Comput. Math. Appl.
77 (10) (2019)
Jean Daniel Mukam
,
Antoine Tambue
Strong Convergence Analysis of the Stochastic Exponential Rosenbrock Scheme for the Finite Element Discretization of Semilinear SPDEs Driven by Multiplicative and Additive Noise.
J. Sci. Comput.
74 (2) (2018)
Jean Daniel Mukam
,
Antoine Tambue
A note on exponential Rosenbrock-Euler method for the finite element discretization of a semilinear parabolic partial differential equation.
Comput. Math. Appl.
76 (7) (2018)