Login / Signup
Jürgen Fuhrmann
ORCID
Publication Activity (10 Years)
Years Active: 2006-2023
Publications (10 Years): 7
Top Topics
Highly Accurate
Diffusion Equation
Diffusion Processes
Semiconductor Devices
Top Venues
Comput. Phys. Commun.
CoRR
J. Comput. Phys.
Numerische Mathematik
</>
Publications
</>
Claire Chainais-Hillairet
,
Robert Eymard
,
Jürgen Fuhrmann
A monotone numerical flux for quasilinear convection diffusion equation.
Math. Comput.
93 (345) (2023)
Benoît Gaudeul
,
Jürgen Fuhrmann
Entropy and convergence analysis for two finite volume schemes for a Nernst-Planck-Poisson system with ion volume constraints.
Numerische Mathematik
151 (1) (2022)
Clément Cancès
,
Claire Chainais-Hillairet
,
Jürgen Fuhrmann
,
Benoît Gaudeul
A numerical analysis focused comparison of several Finite Volume schemes for an Unipolar Degenerated Drift-Diffusion Model.
CoRR
(2019)
Matteo Patriarca
,
Patricio Farrell
,
Jürgen Fuhrmann
,
Thomas Koprucki
Highly accurate quadrature-based Scharfetter-Gummel schemes for charge transport in degenerate semiconductors.
Comput. Phys. Commun.
235 (2019)
Patricio Farrell
,
Thomas Koprucki
,
Jürgen Fuhrmann
Computational and analytical comparison of flux discretizations for the semiconductor device equations beyond Boltzmann statistics.
J. Comput. Phys.
346 (2017)
Abdallah Bradji
,
Jürgen Fuhrmann
Convergence Order of a Finite Volume Scheme for the Time-Fractional Diffusion Equation.
NAA
(2016)
Jürgen Fuhrmann
Comparison and numerical treatment of generalised Nernst-Planck models.
Comput. Phys. Commun.
196 (2015)
Christian Bataillon
,
F. Bouchon
,
Claire Chainais-Hillairet
,
Jürgen Fuhrmann
,
E. Hoarau
,
Rachid Touzani
Numerical methods for the simulation of a corrosion model with moving oxide layer.
J. Comput. Phys.
231 (18) (2012)
Abdallah Bradji
,
Jürgen Fuhrmann
Some Error Estimates for the Discretization of Parabolic Equations on General Multidimensional Nonconforming Spatial Meshes.
NMA
(2010)
Robert Eymard
,
Jürgen Fuhrmann
,
Klaus Gärtner
A finite volume scheme for nonlinear parabolic equations derived from one-dimensional local dirichlet problems.
Numerische Mathematik
102 (3) (2006)