Login / Signup
Harsha Nori
ORCID
Publication Activity (10 Years)
Years Active: 2018-2024
Publications (10 Years): 33
Top Topics
Machine Learning
Generalized Additive Models
Causal Effects
Tabular Data
Top Venues
CoRR
KDD
J. Heal. Informatics Res.
AIES
</>
Publications
</>
Chulin Xie
,
Zinan Lin
,
Arturs Backurs
,
Sivakanth Gopi
,
Da Yu
,
Huseyin A. Inan
,
Harsha Nori
,
Haotian Jiang
,
Huishuai Zhang
,
Yin Tat Lee
,
Bo Li
,
Sergey Yekhanin
Differentially Private Synthetic Data via Foundation Model APIs 2: Text.
CoRR
(2024)
Zinan Lin
,
Sivakanth Gopi
,
Janardhan Kulkarni
,
Harsha Nori
,
Sergey Yekhanin
Differentially Private Synthetic Data via Foundation Model APIs 1: Images.
ICLR
(2024)
Sebastian Bordt
,
Harsha Nori
,
Vanessa Rodrigues
,
Besmira Nushi
,
Rich Caruana
Elephants Never Forget: Memorization and Learning of Tabular Data in Large Language Models.
CoRR
(2024)
Tomas M. Bosschieter
,
Zifei Xu
,
Hui Lan
,
Benjamin J. Lengerich
,
Harsha Nori
,
Ian S. Painter
,
Vivienne Souter
,
Rich Caruana
Interpretable Predictive Models to Understand Risk Factors for Maternal and Fetal Outcomes.
J. Heal. Informatics Res.
8 (1) (2024)
Sebastian Bordt
,
Benjamin J. Lengerich
,
Harsha Nori
,
Rich Caruana
Data Science with LLMs and Interpretable Models.
CoRR
(2024)
Sebastian Bordt
,
Harsha Nori
,
Rich Caruana
Elephants Never Forget: Testing Language Models for Memorization of Tabular Data.
CoRR
(2024)
Benjamin J. Lengerich
,
Sebastian Bordt
,
Harsha Nori
,
Mark E. Nunnally
,
Yin Aphinyanaphongs
,
Manolis Kellis
,
Rich Caruana
LLMs Understand Glass-Box Models, Discover Surprises, and Suggest Repairs.
CoRR
(2023)
Charvi Rastogi
,
Marco Túlio Ribeiro
,
Nicholas King
,
Harsha Nori
,
Saleema Amershi
Supporting Human-AI Collaboration in Auditing LLMs with LLMs.
AIES
(2023)
Zinan Lin
,
Sivakanth Gopi
,
Janardhan Kulkarni
,
Harsha Nori
,
Sergey Yekhanin
Differentially Private Synthetic Data via Foundation Model APIs 1: Images.
CoRR
(2023)
Sébastien Bubeck
,
Varun Chandrasekaran
,
Ronen Eldan
,
Johannes Gehrke
,
Eric Horvitz
,
Ece Kamar
,
Peter Lee
,
Yin Tat Lee
,
Yuanzhi Li
,
Scott M. Lundberg
,
Harsha Nori
,
Hamid Palangi
,
Marco Túlio Ribeiro
,
Yi Zhang
Sparks of Artificial General Intelligence: Early experiments with GPT-4.
CoRR
(2023)
Harsha Nori
,
Nicholas King
,
Scott Mayer McKinney
,
Dean Carignan
,
Eric Horvitz
Capabilities of GPT-4 on Medical Challenge Problems.
CoRR
(2023)
Tomas M. Bosschieter
,
Zifei Xu
,
Hui Lan
,
Benjamin J. Lengerich
,
Harsha Nori
,
Ian Painter
,
Vivienne Souter
,
Rich Caruana
Interpretable Predictive Models to Understand Risk Factors for Maternal and Fetal Outcomes.
CoRR
(2023)
Harsha Nori
,
Yin Tat Lee
,
Sheng Zhang
,
Dean Carignan
,
Richard Edgar
,
Nicolò Fusi
,
Nicholas King
,
Jonathan Larson
,
Yuanzhi Li
,
Weishung Liu
,
Renqian Luo
,
Scott Mayer McKinney
,
Robert Osazuwa Ness
,
Hoifung Poon
,
Tao Qin
,
Naoto Usuyama
,
Chris White
,
Eric Horvitz
Can Generalist Foundation Models Outcompete Special-Purpose Tuning? Case Study in Medicine.
CoRR
(2023)
Zijie J. Wang
,
Alex Kale
,
Harsha Nori
,
Peter Stella
,
Mark E. Nunnally
,
Duen Horng Chau
,
Mihaela Vorvoreanu
,
Jennifer Wortman Vaughan
,
Rich Caruana
Interpretability, Then What? Editing Machine Learning Models to Reflect Human Knowledge and Values.
CoRR
(2022)
Fengshi Niu
,
Harsha Nori
,
Brian Quistorff
,
Rich Caruana
,
Donald Ngwe
,
Aadharsh Kannan
Differentially Private Estimation of Heterogeneous Causal Effects.
CoRR
(2022)
Zijie J. Wang
,
Alex Kale
,
Harsha Nori
,
Peter Stella
,
Mark E. Nunnally
,
Duen Horng Chau
,
Mihaela Vorvoreanu
,
Jennifer Wortman Vaughan
,
Rich Caruana
Interpretability, Then What? Editing Machine Learning Models to Reflect Human Knowledge and Values.
KDD
(2022)
Fengshi Niu
,
Harsha Nori
,
Brian Quistorff
,
Rich Caruana
,
Donald Ngwe
,
Aadharsh Kannan
Differentially Private Estimation of Heterogeneous Causal Effects.
CLeaR
(2022)
Rich Caruana
,
Harsha Nori
Why Data Scientists Prefer Glassbox Machine Learning: Algorithms, Differential Privacy, Editing and Bias Mitigation.
KDD
(2022)
Tomas M. Bosschieter
,
Zifei Xu
,
Hui Lan
,
Benjamin J. Lengerich
,
Harsha Nori
,
Kristin Sitcov
,
Vivienne Souter
,
Rich Caruana
Using Interpretable Machine Learning to Predict Maternal and Fetal Outcomes.
CoRR
(2022)
Qinghao Hu
,
Harsha Nori
,
Peng Sun
,
Yonggang Wen
,
Tianwei Zhang
Primo: Practical Learning-Augmented Systems with Interpretable Models.
USENIX Annual Technical Conference
(2022)
Harsha Nori
,
Rich Caruana
,
Zhiqi Bu
,
Judy Hanwen Shen
,
Janardhan Kulkarni
Accuracy, Interpretability, and Differential Privacy via Explainable Boosting.
ICML
(2021)
Zijie J. Wang
,
Alex Kale
,
Harsha Nori
,
Peter Stella
,
Mark Nunnally
,
Duen Horng Chau
,
Mihaela Vorvoreanu
,
Jennifer Wortman Vaughan
,
Rich Caruana
GAM Changer: Editing Generalized Additive Models with Interactive Visualization.
CoRR
(2021)
Alex Okeson
,
Rich Caruana
,
Nick Craswell
,
Kori Inkpen
,
Scott M. Lundberg
,
Harsha Nori
,
Hanna M. Wallach
,
Jennifer Wortman Vaughan
Summarize with Caution: Comparing Global Feature Attributions.
IEEE Data Eng. Bull.
44 (4) (2021)
Zhi Chen
,
Sarah Tan
,
Harsha Nori
,
Kori Inkpen
,
Yin Lou
,
Rich Caruana
Using Explainable Boosting Machines (EBMs) to Detect Common Flaws in Data.
PKDD/ECML Workshops (1)
(2021)
Harmanpreet Kaur
,
Harsha Nori
,
Samuel Jenkins
,
Rich Caruana
,
Hanna M. Wallach
,
Jennifer Wortman Vaughan
Interpreting Interpretability: Understanding Data Scientists' Use of Interpretability Tools for Machine Learning.
DaSH@KDD
(2021)
Harsha Nori
,
Rich Caruana
,
Zhiqi Bu
,
Judy Hanwen Shen
,
Janardhan Kulkarni
Accuracy, Interpretability, and Differential Privacy via Explainable Boosting.
CoRR
(2021)
Rich Caruana
,
Scott M. Lundberg
,
Marco Túlio Ribeiro
,
Harsha Nori
,
Samuel Jenkins
Intelligible and Explainable Machine Learning: Best Practices and Practical Challenges.
KDD
(2020)
Harmanpreet Kaur
,
Harsha Nori
,
Samuel Jenkins
,
Rich Caruana
,
Hanna M. Wallach
,
Jennifer Wortman Vaughan
Interpreting Interpretability: Understanding Data Scientists' Use of Interpretability Tools for Machine Learning.
CHI
(2020)
Joshua Allen
,
Bolin Ding
,
Janardhan Kulkarni
,
Harsha Nori
,
Olga Ohrimenko
,
Sergey Yekhanin
An Algorithmic Framework For Differentially Private Data Analysis on Trusted Processors.
NeurIPS
(2019)
Harsha Nori
,
Samuel Jenkins
,
Paul Koch
,
Rich Caruana
InterpretML: A Unified Framework for Machine Learning Interpretability.
CoRR
(2019)
Bolin Ding
,
Harsha Nori
,
Paul Li
,
Joshua Allen
Comparing Population Means Under Local Differential Privacy: With Significance and Power.
AAAI
(2018)
Joshua Allen
,
Bolin Ding
,
Janardhan Kulkarni
,
Harsha Nori
,
Olga Ohrimenko
,
Sergey Yekhanin
An Algorithmic Framework For Differentially Private Data Analysis on Trusted Processors.
CoRR
(2018)
Bolin Ding
,
Harsha Nori
,
Paul Li
,
Joshua Allen
Comparing Population Means under Local Differential Privacy: with Significance and Power.
CoRR
(2018)