​
Login / Signup
Gyeong-In Yu
Publication Activity (10 Years)
Years Active: 2018-2023
Publications (10 Years): 20
Top Topics
Parameter Optimization
Lightweight
Learning Frameworks
Deep Learning
Top Venues
CoRR
EuroSys
OSDI
NeurIPS
</>
Publications
</>
Taebum Kim
,
Hyoungjoo Kim
,
Gyeong-In Yu
,
Byung-Gon Chun
BPipe: Memory-Balanced Pipeline Parallelism for Training Large Language Models.
ICML
(2023)
Gyeong-In Yu
,
Joo Seong Jeong
,
Geon-Woo Kim
,
Soojeong Kim
,
Byung-Gon Chun
Orca: A Distributed Serving System for Transformer-Based Generative Models.
OSDI
(2022)
Taebum Kim
,
Eunji Jeong
,
Geon-Woo Kim
,
Yunmo Koo
,
Sehoon Kim
,
Gyeong-In Yu
,
Byung-Gon Chun
Terra: Imperative-Symbolic Co-Execution of Imperative Deep Learning Programs.
CoRR
(2022)
Gyeong-In Yu
,
Saeed Amizadeh
,
Sehoon Kim
,
Artidoro Pagnoni
,
Ce Zhang
,
Byung-Gon Chun
,
Markus Weimer
,
Matteo Interlandi
WindTunnel: Towards Differentiable ML Pipelines Beyond a Single Modele.
Proc. VLDB Endow.
15 (1) (2021)
Taebum Kim
,
Eunji Jeong
,
Geon-Woo Kim
,
Yunmo Koo
,
Sehoon Kim
,
Gyeong-In Yu
,
Byung-Gon Chun
Terra: Imperative-Symbolic Co-Execution of Imperative Deep Learning Programs.
NeurIPS
(2021)
Supun Nakandala
,
Karla Saur
,
Gyeong-In Yu
,
Konstantinos Karanasos
,
Carlo Curino
,
Markus Weimer
,
Matteo Interlandi
A Tensor Compiler for Unified Machine Learning Prediction Serving.
CoRR
(2020)
Joo Seong Jeong
,
Soojeong Kim
,
Gyeong-In Yu
,
Yunseong Lee
,
Byung-Gon Chun
Accelerating Multi-Model Inference by Merging DNNs of Different Weights.
CoRR
(2020)
Woosuk Kwon
,
Gyeong-In Yu
,
Eunji Jeong
,
Byung-Gon Chun
Nimble: Lightweight and Parallel GPU Task Scheduling for Deep Learning.
CoRR
(2020)
Woosuk Kwon
,
Gyeong-In Yu
,
Eunji Jeong
,
Byung-Gon Chun
Nimble: Lightweight and Parallel GPU Task Scheduling for Deep Learning.
NeurIPS
(2020)
Supun Nakandala
,
Karla Saur
,
Gyeong-In Yu
,
Konstantinos Karanasos
,
Carlo Curino
,
Markus Weimer
,
Matteo Interlandi
A Tensor Compiler for Unified Machine Learning Prediction Serving.
OSDI
(2020)
Woo-Yeon Lee
,
Markus Weimer
,
Brian Cho
,
Byung-Gon Chun
,
Yunseong Lee
,
Joo Seong Jeong
,
Gyeong-In Yu
,
Jooyeon Kim
,
Hojin Park
,
Beomyeol Jeon
,
Won Wook Song
,
Gunhee Kim
Automating System Configuration of Distributed Machine Learning.
ICDCS
(2019)
Soojeong Kim
,
Gyeong-In Yu
,
Hojin Park
,
Sungwoo Cho
,
Eunji Jeong
,
Hyeonmin Ha
,
Sanha Lee
,
Joo Seong Jeong
,
Byung-Gon Chun
Parallax: Sparsity-aware Data Parallel Training of Deep Neural Networks.
EuroSys
(2019)
Eunji Jeong
,
Sungwoo Cho
,
Gyeong-In Yu
,
Joo Seong Jeong
,
Dongjin Shin
,
Byung-Gon Chun
JANUS: Fast and Flexible Deep Learning via Symbolic Graph Execution of Imperative Programs.
NSDI
(2019)
Ahnjae Shin
,
Dongjin Shin
,
Sungwoo Cho
,
Do Yoon Kim
,
Eunji Jeong
,
Gyeong-In Yu
,
Byung-Gon Chun
Stage-based Hyper-parameter Optimization for Deep Learning.
CoRR
(2019)
Gyeong-In Yu
,
Saeed Amizadeh
,
Artidoro Pagnoni
,
Byung-Gon Chun
,
Markus Weimer
,
Matteo Interlandi
Making Classical Machine Learning Pipelines Differentiable: A Neural Translation Approach.
CoRR
(2019)
Eunji Jeong
,
Sungwoo Cho
,
Gyeong-In Yu
,
Joo Seong Jeong
,
Dongjin Shin
,
Taebum Kim
,
Byung-Gon Chun
Speculative Symbolic Graph Execution of Imperative Deep Learning Programs.
ACM SIGOPS Oper. Syst. Rev.
53 (1) (2019)
Soojeong Kim
,
Gyeong-In Yu
,
Hojin Park
,
Sungwoo Cho
,
Eunji Jeong
,
Hyeonmin Ha
,
Sanha Lee
,
Joo Seong Jeong
,
Byung-Gon Chun
Parallax: Automatic Data-Parallel Training of Deep Neural Networks.
CoRR
(2018)
Eunji Jeong
,
Joo Seong Jeong
,
Soojeong Kim
,
Gyeong-In Yu
,
Byung-Gon Chun
Improving the expressiveness of deep learning frameworks with recursion.
EuroSys
(2018)
Eunji Jeong
,
Sungwoo Cho
,
Gyeong-In Yu
,
Joo Seong Jeong
,
Dongjin Shin
,
Byung-Gon Chun
JANUS: Fast and Flexible Deep Learning via Symbolic Graph Execution of Imperative Programs.
CoRR
(2018)
Eunji Jeong
,
Joo Seong Jeong
,
Soojeong Kim
,
Gyeong-In Yu
,
Byung-Gon Chun
Improving the Expressiveness of Deep Learning Frameworks with Recursion.
CoRR
(2018)