Login / Signup
Francisco D. Moreira
ORCID
Publication Activity (10 Years)
Years Active: 2021-2024
Publications (10 Years): 8
Top Topics
Remote Sensing Imagery
Change Detection
Land Cover
Spectral Data
Top Venues
IGARSS
Remote. Sens.
Int. J. Appl. Earth Obs. Geoinformation
GISTAM
</>
Publications
</>
Daniel Moraes
,
Bruno Barbosa
,
Hugo Costa
,
Francisco D. Moreira
,
Pedro Benevides
,
Mário Caetano
,
Manuel Lameiras Campagnolo
Continuous forest loss monitoring in a dynamic landscape of Central Portugal with Sentinel-2 data.
Int. J. Appl. Earth Obs. Geoinformation
130 (2024)
Cidália Costa Fonte
,
Diogo Duarte
,
Ismael Jesus
,
Hugo Costa
,
Pedro Benevides
,
Francisco D. Moreira
,
Mário Caetano
Accuracy Assessment and Comparison of National, European and Global Land Use Land Cover Maps at the National Scale - Case Study: Portugal.
Remote. Sens.
16 (9) (2024)
André Alves
,
Daniel Moraes
,
Bruno Barbosa
,
Hugo Costa
,
Francisco D. Moreira
,
Pedro Benevides
,
Mário Caetano
,
Manuel Campagnolo
Exploring Spectral Data, Change Detection Information and Trajectories for Land Cover Monitoring over a Fire-Prone Area of Portugal.
GISTAM
(2023)
Daniel Moraes
,
Pedro Benevides
,
Hugo Costa
,
Francisco D. Moreira
,
Mario Caetano
Exploring Different Levels of Class Nomenclature in Random Forest Classification of Sentinel-2 Data.
IGARSS
(2022)
Hugo Costa
,
Pedro Benevides
,
Francisco D. Moreira
,
Daniel Moraes
,
Mário Caetano
Spatially Stratified and Multi-Stage Approach for National Land Cover Mapping Based on Sentinel-2 Data and Expert Knowledge.
Remote. Sens.
14 (8) (2022)
Hugo Costa
,
Inês Machado
,
Francisco D. Moreira
,
Pedro Benevides
,
Daniel Moraes
,
Mário Caetano
Exploring the Potential of Sentinel-2 Data for Tree Crown Mapping in Oak Agro-Forestry Systems.
IGARSS
(2021)
Pedro Benevides
,
Hugo Costa
,
Francisco D. Moreira
,
Daniel Moraes
,
Mario Caetano
Annual Crop Classification Experiments in Portugal Using Sentinel-2.
IGARSS
(2021)
Daniel Moraes
,
Pedro Benevides
,
Hugo Costa
,
Francisco D. Moreira
,
Mario Caetano
Influence of Sample Size in Land Cover Classification Accuracy Using Random Forest and Sentinel-2 Data in Portugal.
IGARSS
(2021)