Login / Signup
Erik Schultheis
ORCID
Publication Activity (10 Years)
Years Active: 2020-2024
Publications (10 Years): 20
Top Topics
Multi Label
Single Commodity
Loss Function
Binary Classification
Top Venues
CoRR
KDD
NeurIPS
Mach. Learn.
</>
Publications
</>
Siddhant Kharbanda
,
Devaansh Gupta
,
Erik Schultheis
,
Atmadeep Banerjee
,
Cho-Jui Hsieh
,
Rohit Babbar
Gandalf: Learning Label-label Correlations in Extreme Multi-label Classification via Label Features.
KDD
(2024)
Erik Schultheis
,
Wojciech Kotlowski
,
Marek Wydmuch
,
Rohit Babbar
,
Strom Borman
,
Krzysztof Dembczynski
Consistent algorithms for multi-label classification with macro-at-k metrics.
ICLR
(2024)
Erik Schultheis
,
Wojciech Kotlowski
,
Marek Wydmuch
,
Rohit Babbar
,
Strom Borman
,
Krzysztof Dembczynski
Consistent algorithms for multi-label classification with macro-at-k metrics.
CoRR
(2024)
Siddhant Kharbanda
,
Devaansh Gupta
,
Erik Schultheis
,
Atmadeep Banerjee
,
Cho-Jui Hsieh
,
Rohit Babbar
Learning label-label correlations in Extreme Multi-label Classification via Label Features.
CoRR
(2024)
Wojciech Kotlowski
,
Marek Wydmuch
,
Erik Schultheis
,
Rohit Babbar
,
Krzysztof Dembczynski
A General Online Algorithm for Optimizing Complex Performance Metrics.
CoRR
(2024)
Erik Schultheis
,
Rohit Babbar
Towards Memory-Efficient Training for Extremely Large Output Spaces - Learning with 500k Labels on a Single Commodity GPU.
CoRR
(2023)
David Melching
,
Erik Schultheis
,
Eric Breitbarth
Generating artificial displacement data of cracked specimen using physics-guided adversarial networks.
Mach. Learn. Sci. Technol.
4 (4) (2023)
Erik Schultheis
,
Marek Wydmuch
,
Wojciech Kotlowski
,
Rohit Babbar
,
Krzysztof Dembczynski
Generalized test utilities for long-tail performance in extreme multi-label classification.
CoRR
(2023)
David Melching
,
Erik Schultheis
,
Eric Breitbarth
Physics-guided adversarial networks for artificial digital image correlation data generation.
CoRR
(2023)
Erik Schultheis
,
Rohit Babbar
Towards Memory-Efficient Training for Extremely Large Output Spaces - Learning with 670k Labels on a Single Commodity GPU.
ECML/PKDD (3)
(2023)
Erik Schultheis
,
Marek Wydmuch
,
Wojciech Kotlowski
,
Rohit Babbar
,
Krzysztof Dembczynski
Generalized test utilities for long-tail performance in extreme multi-label classification.
NeurIPS
(2023)
Erik Schultheis
,
Rohit Babbar
Speeding-up one-versus-all training for extreme classification via mean-separating initialization.
Mach. Learn.
111 (11) (2022)
Siddhant Kharbanda
,
Atmadeep Banerjee
,
Erik Schultheis
,
Rohit Babbar
CascadeXML: Rethinking Transformers for End-to-end Multi-resolution Training in Extreme Multi-label Classification.
NeurIPS
(2022)
Siddhant Kharbanda
,
Atmadeep Banerjee
,
Erik Schultheis
,
Rohit Babbar
CascadeXML: Rethinking Transformers for End-to-end Multi-resolution Training in Extreme Multi-label Classification.
CoRR
(2022)
Erik Schultheis
,
Marek Wydmuch
,
Rohit Babbar
,
Krzysztof Dembczynski
On Missing Labels, Long-tails and Propensities in Extreme Multi-label Classification.
CoRR
(2022)
Erik Schultheis
,
Marek Wydmuch
,
Rohit Babbar
,
Krzysztof Dembczynski
On Missing Labels, Long-tails and Propensities in Extreme Multi-label Classification.
KDD
(2022)
Erik Schultheis
,
Rohit Babbar
Speeding-up One-vs-All Training for Extreme Classification via Smart Initialization.
CoRR
(2021)
Erik Schultheis
,
Rohit Babbar
Unbiased Loss Functions for Multilabel Classification with Missing Labels.
CoRR
(2021)
Mohammadreza Qaraei
,
Erik Schultheis
,
Priyanshu Gupta
,
Rohit Babbar
Convex Surrogates for Unbiased Loss Functions in Extreme Classification With Missing Labels.
WWW
(2021)
Erik Schultheis
,
Mohammadreza Qaraei
,
Priyanshu Gupta
,
Rohit Babbar
Unbiased Loss Functions for Extreme Classification With Missing Labels.
CoRR
(2020)