Login / Signup
Daozhi Han
ORCID
Publication Activity (10 Years)
Years Active: 2015-2024
Publications (10 Years): 20
Top Topics
Numerical Scheme
Fluid Flow
Nonlinear Diffusion Filtering
Higher Order
Top Venues
J. Sci. Comput.
CoRR
J. Comput. Phys.
Commun. Nonlinear Sci. Numer. Simul.
</>
Publications
</>
Yali Gao
,
Daozhi Han
,
Sayantan Sarkar
A high-order accurate unconditionally stable bound-preserving numerical scheme for the Cahn-Hilliard-Navier-Stokes equations.
CoRR
(2024)
Yali Gao
,
Daozhi Han
Second-Order Decoupled Linear Energy-Law Preserving gPAV Numerical Schemes for Two-Phase Flows in Superposed Free Flow and Porous Media.
J. Sci. Comput.
100 (2) (2024)
Gang Chen
,
Daozhi Han
,
John R. Singler
,
Yangwen Zhang
On the Superconvergence of a Hybridizable Discontinuous Galerkin Method for the Cahn-Hilliard Equation.
SIAM J. Numer. Anal.
61 (1) (2023)
John Carter
,
Daozhi Han
,
Nan Jiang
Second Order, Unconditionally Stable, Linear Ensemble Algorithms for the Magnetohydrodynamics Equations.
J. Sci. Comput.
94 (2) (2023)
John Carter
,
Daozhi Han
,
Nan Jiang
Second order, unconditionally stable, linear ensemble algorithms for the magnetohydrodynamics equations.
CoRR
(2022)
Liang Li
,
Yanlong Fan
,
Daozhi Han
,
Quan Wang
Dynamical transition and bifurcation of hydromagnetic convection in a rotating fluid layer.
Commun. Nonlinear Sci. Numer. Simul.
112 (2022)
Yali Gao
,
Daozhi Han
,
Xiaoming He
,
Ulrich Rüde
Unconditionally stable numerical methods for Cahn-Hilliard-Navier-Stokes-Darcy system with different densities and viscosities.
J. Comput. Phys.
454 (2022)
Liang Li
,
Yanlong Fan
,
Daozhi Han
,
Quan Wang
Stability and dynamical transition of a electrically conducting rotating fluid.
CoRR
(2021)
Daozhi Han
,
Marco Hernandez
,
Quan Wang
Dynamic Transitions and Bifurcations for a Class of Axisymmetric Geophysical Fluid Flow.
SIAM J. Appl. Dyn. Syst.
20 (1) (2021)
Wenbin Chen
,
Daozhi Han
,
Cheng Wang
,
Shufen Wang
,
Xiaoming Wang
,
Yichao Zhang
Error estimate of a decoupled numerical scheme for the Cahn-Hilliard-Stokes-Darcy system.
CoRR
(2021)
Yali Gao
,
Daozhi Han
,
Xiaoming He
,
Ulrich Rüde
A decoupled numerical method for two-phase flows of different densities and viscosities in superposed fluid and porous layers.
CoRR
(2021)
Jia Zhao
,
Daozhi Han
Second-order decoupled energy-stable schemes for Cahn-Hilliard-Navier-Stokes equations.
J. Comput. Phys.
443 (2021)
Wenbin Chen
,
Daozhi Han
,
Xiaoming Wang
,
Yichao Zhang
Uniquely Solvable and Energy Stable Decoupled Numerical Schemes for the Cahn-Hilliard-Navier-Stokes-Darcy-Boussinesq System.
J. Sci. Comput.
85 (2) (2020)
Daozhi Han
,
Nan Jiang
A second order, linear, unconditionally stable, Crank-Nicolson-Leapfrog scheme for phase field models of two-phase incompressible flows.
Appl. Math. Lett.
108 (2020)
Feng Bai
,
Daozhi Han
,
Xiaoming He
,
Xiaofeng Yang
Deformation and coalescence of ferrodroplets in Rosensweig model using the phase field and modified level set approaches under uniform magnetic fields.
Commun. Nonlinear Sci. Numer. Simul.
85 (2020)
Daozhi Han
,
Xiaoming Wang
A Second Order in Time, Decoupled, Unconditionally Stable Numerical Scheme for the Cahn-Hilliard-Darcy System.
J. Sci. Comput.
77 (2) (2018)
Daozhi Han
,
Alex Brylev
,
Xiaofeng Yang
,
Zhijun Tan
Numerical Analysis of Second Order, Fully Discrete Energy Stable Schemes for Phase Field Models of Two-Phase Incompressible Flows.
J. Sci. Comput.
70 (3) (2017)
Wenbin Chen
,
Daozhi Han
,
Xiaoming Wang
Uniquely solvable and energy stable decoupled numerical schemes for the Cahn-Hilliard-Stokes-Darcy system for two-phase flows in karstic geometry.
Numerische Mathematik
137 (1) (2017)
Xiaofeng Yang
,
Daozhi Han
Linearly first- and second-order, unconditionally energy stable schemes for the phase field crystal model.
J. Comput. Phys.
330 (2017)
Daozhi Han
A Decoupled Unconditionally Stable Numerical Scheme for the Cahn-Hilliard-Hele-Shaw System.
J. Sci. Comput.
66 (3) (2016)
Daozhi Han
,
Xiaoming Wang
A second order in time, uniquely solvable, unconditionally stable numerical scheme for Cahn-Hilliard-Navier-Stokes equation.
J. Comput. Phys.
290 (2015)