Login / Signup
Daniel C. Hackett
Publication Activity (10 Years)
Years Active: 2020-2024
Publications (10 Years): 13
Top Topics
Sampling Strategies
Valued Data
Theoretical Framework
Boolean Algebra
Top Venues
CoRR
</>
Publications
</>
Ryan Abbott
,
Aleksandar Botev
,
Denis Boyda
,
Daniel C. Hackett
,
Gurtej Kanwar
,
Sébastien Racanière
,
Danilo J. Rezende
,
Fernando Romero-López
,
Phiala E. Shanahan
,
Julian M. Urban
Applications of flow models to the generation of correlated lattice QCD ensembles.
CoRR
(2024)
Ryan Abbott
,
Michael S. Albergo
,
Denis Boyda
,
Daniel C. Hackett
,
Gurtej Kanwar
,
Fernando Romero-López
,
Phiala E. Shanahan
,
Julian M. Urban
Practical applications of machine-learned flows on gauge fields.
CoRR
(2024)
Ryan Abbott
,
Michael S. Albergo
,
Aleksandar Botev
,
Denis Boyda
,
Kyle Cranmer
,
Daniel C. Hackett
,
Gurtej Kanwar
,
Alexander G. de G. Matthews
,
Sébastien Racanière
,
Ali Razavi
,
Danilo J. Rezende
,
Fernando Romero-López
,
Phiala E. Shanahan
,
Julian M. Urban
Normalizing flows for lattice gauge theory in arbitrary space-time dimension.
CoRR
(2023)
Ryan Abbott
,
Michael S. Albergo
,
Aleksandar Botev
,
Denis Boyda
,
Kyle Cranmer
,
Daniel C. Hackett
,
Alexander G. de G. Matthews
,
Sébastien Racanière
,
Ali Razavi
,
Danilo J. Rezende
,
Fernando Romero-López
,
Phiala E. Shanahan
,
Julian M. Urban
Aspects of scaling and scalability for flow-based sampling of lattice QCD.
CoRR
(2022)
Denis Boyda
,
Salvatore Calì
,
Sam Foreman
,
Lena Funcke
,
Daniel C. Hackett
,
Yin Lin
,
Gert Aarts
,
Andrei Alexandru
,
Xiao-Yong Jin
,
Biagio Lucini
,
Phiala E. Shanahan
Applications of Machine Learning to Lattice Quantum Field Theory.
CoRR
(2022)
Michael S. Albergo
,
Denis Boyda
,
Kyle Cranmer
,
Daniel C. Hackett
,
Gurtej Kanwar
,
Sébastien Racanière
,
Danilo J. Rezende
,
Fernando Romero-López
,
Phiala E. Shanahan
,
Julian M. Urban
Flow-based sampling in the lattice Schwinger model at criticality.
CoRR
(2022)
Ryan Abbott
,
Michael S. Albergo
,
Denis Boyda
,
Kyle Cranmer
,
Daniel C. Hackett
,
Gurtej Kanwar
,
Sébastien Racanière
,
Danilo J. Rezende
,
Fernando Romero-López
,
Phiala E. Shanahan
,
Betsy Tian
,
Julian M. Urban
Gauge-equivariant flow models for sampling in lattice field theories with pseudofermions.
CoRR
(2022)
Salvatore Calì
,
Daniel C. Hackett
,
Yin Lin
,
Phiala E. Shanahan
,
Brian Xiao
Neural-network preconditioners for solving the Dirac equation in lattice gauge theory.
CoRR
(2022)
Daniel C. Hackett
,
Chung-Chun Hsieh
,
Michael S. Albergo
,
Denis Boyda
,
Jiunn-Wei Chen
,
Kai-Feng Chen
,
Kyle Cranmer
,
Gurtej Kanwar
,
Phiala E. Shanahan
Flow-based sampling for multimodal distributions in lattice field theory.
CoRR
(2021)
Michael S. Albergo
,
Gurtej Kanwar
,
Sébastien Racanière
,
Danilo J. Rezende
,
Julian M. Urban
,
Denis Boyda
,
Kyle Cranmer
,
Daniel C. Hackett
,
Phiala E. Shanahan
Flow-based sampling for fermionic lattice field theories.
CoRR
(2021)
Michael S. Albergo
,
Denis Boyda
,
Daniel C. Hackett
,
Gurtej Kanwar
,
Kyle Cranmer
,
Sébastien Racanière
,
Danilo Jimenez Rezende
,
Phiala E. Shanahan
Introduction to Normalizing Flows for Lattice Field Theory.
CoRR
(2021)
Denis Boyda
,
Gurtej Kanwar
,
Sébastien Racanière
,
Danilo Jimenez Rezende
,
Michael S. Albergo
,
Kyle Cranmer
,
Daniel C. Hackett
,
Phiala E. Shanahan
Sampling using SU(N) gauge equivariant flows.
CoRR
(2020)
Gurtej Kanwar
,
Michael S. Albergo
,
Denis Boyda
,
Kyle Cranmer
,
Daniel C. Hackett
,
Sébastien Racanière
,
Danilo Jimenez Rezende
,
Phiala E. Shanahan
Equivariant flow-based sampling for lattice gauge theory.
CoRR
(2020)