Login / Signup
Chao Ma
ORCID
Publication Activity (10 Years)
Years Active: 2018-2024
Publications (10 Years): 20
Top Topics
Data Imputation
Monte Carlo
Causal Inference
Missing Data Imputation
Top Venues
CoRR
NeurIPS
ICML
AABI
</>
Publications
</>
Meyer Scetbon
,
Joel Jennings
,
Agrin Hilmkil
,
Cheng Zhang
,
Chao Ma
FiP: a Fixed-Point Approach for Causal Generative Modeling.
CoRR
(2024)
Tomas Geffner
,
Javier Antorán
,
Adam Foster
,
Wenbo Gong
,
Chao Ma
,
Emre Kiciman
,
Amit Sharma
,
Angus Lamb
,
Martin Kukla
,
Nick Pawlowski
,
Agrin Hilmkil
,
Joel Jennings
,
Meyer Scetbon
,
Miltiadis Allamanis
,
Cheng Zhang
Deep End-to-end Causal Inference.
Trans. Mach. Learn. Res.
2024 (2024)
Shuyu Liu
,
Ting Chen
,
Tiantian Zhao
,
Shanshan Liu
,
Chao Ma
Research on cooperative UAV countermeasure strategy based on interception triangle.
ICMLCA
(2023)
Matthew Ashman
,
Chao Ma
,
Agrin Hilmkil
,
Joel Jennings
,
Cheng Zhang
Causal Reasoning in the Presence of Latent Confounders via Neural ADMG Learning.
ICLR
(2023)
Ruibo Tu
,
Chao Ma
,
Cheng Zhang
Causal-Discovery Performance of ChatGPT in the context of Neuropathic Pain Diagnosis.
CoRR
(2023)
Ignacio Peis
,
Chao Ma
,
José Miguel Hernández-Lobato
Missing Data Imputation and Acquisition with Deep Hierarchical Models and Hamiltonian Monte Carlo.
NeurIPS
(2022)
Weijie He
,
Xiaohao Mao
,
Chao Ma
,
Yu Huang
,
José Miguel Hernández-Lobato
,
Ting Chen
BSODA: A Bipartite Scalable Framework for Online Disease Diagnosis.
WWW
(2022)
Tomas Geffner
,
Javier Antoran
,
Adam Foster
,
Wenbo Gong
,
Chao Ma
,
Emre Kiciman
,
Amit Sharma
,
Angus Lamb
,
Martin Kukla
,
Nick Pawlowski
,
Miltiadis Allamanis
,
Cheng Zhang
Deep End-to-end Causal Inference.
CoRR
(2022)
Ignacio Peis
,
Chao Ma
,
José Miguel Hernández-Lobato
Missing Data Imputation and Acquisition with Deep Hierarchical Models and Hamiltonian Monte Carlo.
CoRR
(2022)
Chao Ma
,
Cheng Zhang
Identifiable Generative models for Missing Not at Random Data Imputation.
NeurIPS
(2021)
Chao Ma
,
José Miguel Hernández-Lobato
Functional Variational Inference based on Stochastic Process Generators.
NeurIPS
(2021)
Chao Ma
,
Cheng Zhang
Identifiable Generative Models for Missing Not at Random Data Imputation.
CoRR
(2021)
Chao Ma
,
Sebastian Tschiatschek
,
Richard E. Turner
,
José Miguel Hernández-Lobato
,
Cheng Zhang
VAEM: a Deep Generative Model for Heterogeneous Mixed Type Data.
NeurIPS
(2020)
Chao Ma
,
Sebastian Tschiatschek
,
José Miguel Hernández-Lobato
,
Richard E. Turner
,
Cheng Zhang
VAEM: a Deep Generative Model for Heterogeneous Mixed Type Data.
CoRR
(2020)
Weijie He
,
Xiaohao Mao
,
Chao Ma
,
José Miguel Hernández-Lobato
,
Ting Chen
FIT: a Fast and Accurate Framework for Solving Medical Inquiring and Diagnosing Tasks.
CoRR
(2020)
Chao Ma
,
Yingzhen Li
,
José Miguel Hernández-Lobato
Variational Implicit Processes.
ICML
(2019)
Chao Ma
,
Sebastian Tschiatschek
,
Konstantina Palla
,
José Miguel Hernández-Lobato
,
Sebastian Nowozin
,
Cheng Zhang
EDDI: Efficient Dynamic Discovery of High-Value Information with Partial VAE.
ICML
(2019)
Chao Ma
,
Sebastian Tschiatschek
,
Yingzhen Li
,
Richard E. Turner
,
José Miguel Hernández-Lobato
,
Cheng Zhang
HM-VAEs: a Deep Generative Model for Real-valued Data with Heterogeneous Marginals.
AABI
(2019)
Chao Ma
,
Sebastian Tschiatschek
,
Konstantina Palla
,
José Miguel Hernández-Lobato
,
Sebastian Nowozin
,
Cheng Zhang
EDDI: Efficient Dynamic Discovery of High-Value Information with Partial VAE.
CoRR
(2018)
Chao Ma
,
Yingzhen Li
,
José Miguel Hernández-Lobato
Variational Implicit Processes.
CoRR
(2018)