​
Login / Signup
Anna Kuzina
Publication Activity (10 Years)
Years Active: 2019-2024
Publications (10 Years): 17
Top Topics
Convolution Kernel
Denoising
Generative Model
Knowledge Transfer
Top Venues
CoRR
NeurIPS
ICML
ABCD-NP@MICCAI
</>
Publications
</>
Haotian Chen
,
Anna Kuzina
,
Babak Esmaeili
,
Jakub M. Tomczak
Variational Stochastic Gradient Descent for Deep Neural Networks.
CoRR
(2024)
Anna Kuzina
,
Jakub M. Tomczak
Analyzing the Posterior Collapse in Hierarchical Variational Autoencoders.
CoRR
(2023)
Michal Zajac
,
Kamil Deja
,
Anna Kuzina
,
Jakub M. Tomczak
,
Tomasz Trzcinski
,
Florian Shkurti
,
Piotr Milos
Exploring Continual Learning of Diffusion Models.
CoRR
(2023)
Anna Kuzina
,
Kumar Pratik
,
Fabio Valerio Massoli
,
Arash Behboodi
Equivariant Priors for Compressed Sensing with Unknown Orientation.
CoRR
(2022)
David W. Romero
,
Anna Kuzina
,
Erik J. Bekkers
,
Jakub Mikolaj Tomczak
,
Mark Hoogendoorn
CKConv: Continuous Kernel Convolution For Sequential Data.
ICLR
(2022)
Anna Kuzina
,
Max Welling
,
Jakub M. Tomczak
Alleviating Adversarial Attacks on Variational Autoencoders with MCMC.
NeurIPS
(2022)
Anna Kuzina
,
Kumar Pratik
,
Fabio Valerio Massoli
,
Arash Behboodi
Equivariant Priors for compressed sensing with unknown orientation.
ICML
(2022)
Anna Kuzina
,
Max Welling
,
Jakub M. Tomczak
Defending Variational Autoencoders from Adversarial Attacks with MCMC.
CoRR
(2022)
Kamil Deja
,
Anna Kuzina
,
Tomasz Trzcinski
,
Jakub M. Tomczak
On Analyzing Generative and Denoising Capabilities of Diffusion-based Deep Generative Models.
NeurIPS
(2022)
Kamil Deja
,
Anna Kuzina
,
Tomasz Trzcinski
,
Jakub M. Tomczak
On Analyzing Generative and Denoising Capabilities of Diffusion-based Deep Generative Models.
CoRR
(2022)
Anna Kuzina
,
Max Welling
,
Jakub M. Tomczak
Diagnosing Vulnerability of Variational Auto-Encoders to Adversarial Attacks.
CoRR
(2021)
David W. Romero
,
Anna Kuzina
,
Erik J. Bekkers
,
Jakub M. Tomczak
,
Mark Hoogendoorn
CKConv: Continuous Kernel Convolution For Sequential Data.
CoRR
(2021)
Evgenii Egorov
,
Anna Kuzina
,
Evgeny Burnaev
BooVAE: Boosting Approach for Continual Learning of VAE.
NeurIPS
(2021)
Anna Kuzina
,
Evgenii Egorov
,
Evgeny Burnaev
Bayesian Generative Models for Knowledge Transfer in MRI Semantic Segmentation Problems.
CoRR
(2019)
Marina Pominova
,
Anna Kuzina
,
Ekaterina Kondrateva
,
Svetlana Sushchinskaya
,
Maxim Sharaev
,
Evgeny Burnaev
,
Vyacheslav Yarkin
Ensemble of 3D CNN regressors with data fusion for fluid intelligence prediction.
CoRR
(2019)
Anna Kuzina
,
Evgenii Egorov
,
Evgeny Burnaev
BooVAE: A scalable framework for continual VAE learning under boosting approach.
CoRR
(2019)
Marina Pominova
,
Anna Kuzina
,
Ekaterina Kondrateva
,
Svetlana Sushchinskaya
,
Evgeny Burnaev
,
Vyacheslav Yarkin
,
Maxim Sharaev
Ensemble of 3D CNN Regressors with Data Fusion for Fluid Intelligence Prediction.
ABCD-NP@MICCAI
(2019)