Login / Signup
Ambit Kumar Pany
ORCID
Publication Activity (10 Years)
Years Active: 2016-2023
Publications (10 Years): 10
Top Topics
Alternative Methods
Finite Element
Partial Differential Equations
High Order
Top Venues
Comput. Math. Appl.
Appl. Math. Comput.
Numer. Algorithms
CoRR
</>
Publications
</>
Soumyarani Mishra
,
Morrakot Khebchareon
,
Ambit Kumar Pany
Second order backward difference scheme combined with finite element method for a 2D Sobolev equation with Burgers' type non-linearity.
Comput. Math. Appl.
141 (2023)
Morrakot Khebchareon
,
Ambit Kumar Pany
,
Amiya Kumar Pani
An H1-Galerkin mixed finite element method for identification of time dependent parameters in parabolic problems.
Appl. Math. Comput.
424 (2022)
Soumyarani Mishra
,
Ambit Kumar Pany
Completely discrete schemes for 2D Sobolev equations with Burgers' type nonlinearity.
Numer. Algorithms
90 (3) (2022)
Ambit Kumar Pany
,
Morrakot Khebchareon
,
Amiya Kumar Pani
Negative norm estimates and superconvergence results in Galerkin method for strongly nonlinear parabolic problems.
Comput. Math. Appl.
99 (2021)
P. Danumjaya
,
Ambit Kumar Pany
,
Amiya Kumar Pani
Morley FEM for the fourth-order nonlinear reaction-diffusion problems.
Comput. Math. Appl.
99 (2021)
Ambit Kumar Pany
,
Morrakot Khebchareon
,
Amiya Kumar Pani
Negative norm estimates and superconvergence results in Galerkin method for strongly nonlinear parabolic problems.
CoRR
(2021)
Ambit Kumar Pany
,
Saumya Bajpai
,
Soumyarani Mishra
Finite element Galerkin method for 2D Sobolev equations with Burgers' type nonlinearity.
Appl. Math. Comput.
387 (2020)
Saumya Bajpai
,
Ambit Kumar Pany
A priori error estimates of fully discrete finite element Galerkin method for Kelvin-Voigt viscoelastic fluid flow model.
Comput. Math. Appl.
78 (12) (2019)
Ambit Kumar Pany
Fully discrete second-order backward difference method for Kelvin-Voigt fluid flow model.
Numer. Algorithms
78 (4) (2018)
Ambit Kumar Pany
,
Saumya Bajpai
,
Amiya Kumar Pani
Optimal error estimates for semidiscrete Galerkin approximations to equations of motion described by Kelvin-Voigt viscoelastic fluid flow model.
J. Comput. Appl. Math.
302 (2016)